News & Announcements
Links
Oscillation Theory of $h$-fractional Difference Equations
  
View Full Text  View/Add Comment  Download reader
KeyWord:$h$-deference equations; Oscillation; Fractional
Author NameAffiliation
Fanfan Li School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China 
Zhenlai Han School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China 
Hits: 134
Download times: 385
Abstract:
      In this paper, we initiate the oscillation theory for $h$-fractional difference equations of the form \begin{equation*} \begin{cases} _{a}\Delta^{\alpha}_{h}x(t)+r(t)x(t)=e(t)+f(t,x(t)),\ \ \ t\in\mathbb{T}_{h}^{a},\ \ 1<\alpha<2,\x(a)=c_{0},\ \ \Delta_{h}x(a)=c_{1},\ \ \ c_{0}, c_{1}\in\mathbb{R}, \end{cases} \end{equation*} where $_{a}\Delta^{\alpha}_{h}$ is the Riemann-Liouville $h$-fractional difference of order $\alpha,$ $\mathbb{T}_{h}^{a}:=\{a+kh, k\in\mathbb{Z^{+}}\cup\{0\}\},$ and $a\geqslant0,$ $h>0.$ We study the oscillation of $h$-fractional difference equations with Riemann-Liouville derivative, and obtain some sufficient conditions for oscillation of every solution. Finally, we give an example to illustrate our main results.