News & Announcements
Links
Oscillation Theory of $h$-fractional Difference Equations
  
View Full Text  View/Add Comment  Download reader
KeyWord:$h$-deference equations  Oscillation  Fractional
Author NameAffiliation
Fanfan Li School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China 
Zhenlai Han School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022, China 
Hits: 336
Download times: 694
Abstract:
      In this paper, we initiate the oscillation theory for $h$-fractional difference equations of the form \begin{equation*} \begin{cases} _{a}\Delta^{\alpha}_{h}x(t)+r(t)x(t)=e(t)+f(t,x(t)),\ \ \ t\in\mathbb{T}_{h}^{a},\ \ 1<\alpha<2,\x(a)=c_{0},\ \ \Delta_{h}x(a)=c_{1},\ \ \ c_{0}, c_{1}\in\mathbb{R}, \end{cases} \end{equation*} where $_{a}\Delta^{\alpha}_{h}$ is the Riemann-Liouville $h$-fractional difference of order $\alpha,$ $\mathbb{T}_{h}^{a}:=\{a+kh, k\in\mathbb{Z^{+}}\cup\{0\}\},$ and $a\geqslant0,$ $h>0.$ We study the oscillation of $h$-fractional difference equations with Riemann-Liouville derivative, and obtain some sufficient conditions for oscillation of every solution. Finally, we give an example to illustrate our main results.