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Existence and Approximate Controllability of
Solutions for an Impulsive Evolution Equation
with Nonlocal Conditions in Banach Space∗
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Abstract In this article, we study the existence of mild solutions and approx-
imate controllability for non-autonomous impulsive evolution equations with
nonlocal conditions in Banach space. The existence of mild solutions and some
conditions for approximate controllability of these non-autonomous impulsive
evolution equations are given by using the Krasnoselskii’s fixed point theorem,
the theory of evolution family and the resolvent operator. In particular, the
impulsive functions are supposed to be continuous and the nonlocal item is
divided into Lipschitz continuous and completely bounded. An example is
given as an application of the results.
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1. Introduction

Recently, the evolution equation is used to describe the state or process that changes
with time in physics, mechanics or other natural sciences. It is well known that the
nonlocal problems are more widely used in applications than the classical ones.
Byszewski [1] first investigated the nonlocal problems. They obtained the existence
and uniqueness of mild solutions for nonlocal differential equations without impul-
sive conditions. Deng [3] pointed out that the nonlocal initial condition can be
applied in physics with a better effect than the classical initial condition u(0) = u0
and used the nonlocal conditions u(0) =

∑m
k=1 cku (tk) to describe the diffusion
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phenomenon on a small amount of gas in a transparent tube. The above find-
ings have encouraged more authors to focus on differential equations with non-local
conditions. The differential equations with non-local conditions are often applied
to models of processes subject to abrupt changes in a specific time. They have
a wide range of applications in areas such as control, mechanical, electrical en-
gineering fields and so on. Fan [4] discussed the existence results for semilinear
differential equations with nonlocal and impulsive conditions. Tai [5] studied the
exact controllability of a fractional impulsive neutral functional integro-differential
systems with nonlocal conditions by using the fractional power of operators and
the Banach contraction mapping theorem. When describing some physical phe-
nomena, the nonlocal condition can be more useful than the standard initial con-
dition u(0) = u0. The importance of nonlocal conditions has also been discussed
in [1,2,5,6,14–17,19,22–28,30,31]. When discussing the problem of evolution equa-
tions, it is often necessary to explore their application and combine them with the
controllability.

The controllability and approximate controllability of evolution equations are
considered by many authors owing to their wide applications in the field of physics,
biology and medicine, see [5,6,9–14,17,21,29]. The concept of controllability, after
being first introduced by Kalman [7] in 1963, has become an active area of re-
search due to its enormous applications in physics. There are various studies on the
approximate controllability of systems represented by differential equations, inte-
gral differential equations, differential inclusion, neutral-type generalized differential
equations and integer-order impulsive differential equations in Banach spaces. Mah-
mudov [8] in 2008 studied the approximate controllability for the abstract evolution
equations with nonlocal conditions in Hilbert spaces and obtained sufficient condi-
tions for the approximate controllability of the semi-linear evolution equation. In
2018, Chen [12] discussed the approximate controllability of non-autonomous evo-
lution system with nonlocal conditions and introduced a new Green’s function to
prove the existence of mild solutions. The approximate controllability of the devel-
opment equation with impulse makes the application of the development equation
more practical and representative.

Impulsive differential equations are commonly used for modelling processes that
change abruptly at some point in time. They have a wide range of applications in
control, mechanical, electrical and other fields. These changes of state are caused
by transient forces (perturbations). Differential systems that use transient forces
as impulsive conditions appear in many applications, such as biological phenom-
ena involving thresholds, sudden rhythm models in medicine and biology, optimal
control models in economics and frequency modulation systems. For these reasons,
Hernández and O’Regan [9] discussed on a new class of abstract impulsive differ-
ential equations, introduced a new model named as differential equations without
instantaneous impulses. It shows that the action of drugs in the blood and their
absorption into the body is a gradual and continuous process. Wang [10] studied a
general impulsive evolution equation and discussed periodic solutions and Ulam’s
type stability to a new generalized evolution equation without instantaneous im-
pulses in the infinite-dimensional spaces.

In 2018, Chen [12] studied the approximate controllability of non-autonomous
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evolution system with nonlocal conditions in Banach space X as follows.u′(t)−A(t)u(t) = Bv(t) + f(t, u(t)), t ∈ [0, a] := J,

u(0) =
∑m
k=1 cku (tk) ,

where a > 0 is a constant, A(t) is a family of (possibly unbounded) linear operators
depending on time and having the domainsD(A(t)) for every t ∈ J , the control func-
tion v(t) is given in Banach space L2(J ;U) of admissible control functions, U is also
a Banach space, h(t) ∈ C(J, J), f : J ×X ×X → X is a continuous nonlinear map-
ping, and B is a bounded linear operator from U to X, 0 < t1 < t2 < · · · < tm < a,
m ∈ N, ck are real numbers, ck ̸= 0, k = 1, 2, · · · ,m. By using a new Green’s
function and constructing a control function involving a Gramian controllability
operator, the author studied the existence of mild solutions and approximate con-
trollability.

In 2015, Liang [13] obtained the controllability of fractional integro-differential
evolution equations with nonlocal conditionsDqu(t) +Au(t) = f(t, u(t), Gu(t)) +Bv(t), t ∈ J,

u(0) =
∑m
k=1 cku (tk) ,

where Dq denotes the Caputo fractional derivative of order q ∈ (0, 1),−A : D(A) ⊂
X → X is the infinitesimal generator of a C0-semigroup T (t)(t ⩾ 0) of the uniformly
bounded linear operator, the control function v is given in L2(J, U), U is a Banach
space, B is a linear bounded operator from U to X, f is a given function which will
be specified later and

Gu(t) =

∫ t

0

K(t, s)u(s)ds

is a Volterra integral operator with integral kernel K ∈ C (∆,R+) ,∆ = {(t, s) :
0 ⩽ s ⩽ t ⩽ b}. He used the fixed point theorem of Mönch’s type and studied
the controllability for a class of fractional integro-differential evolution equations
with nonlocal initial conditions. There is less research [12, 13] on the approximate
controllability of evolution equations with both nonlocal conditions and impulses.

Motivated by all of the above-mentioned aspects, in this paper we consider the
existence of mild solutions as well as the approximate controllability for the following
non-autonomous evolution equation with nonlocal conditions

u′(t) = A(t)u(t) +Bv(t) + f(t, u(t), u(h(t))), t ∈ J := [0, a], t ̸= tk,

∆u (tk) = u
(
t+k
)
− u

(
t−k
)
= Ik (u (tk)) , k = 1, 2, · · · ,m,

u(0) = g(u) + u0,

(1.1)

in Banach space X, where a > 0 is a constant. A(t) : D(A) ⊆ X → X is a family
of densely defined and closed linear operator which generates an evolution system
{H(t, s) : 0 ⩽ s ⩽ t ⩽ a} on X, D(A) is independent of t, the control function
v(t) is given in Banach space L2(J ;U) of admissible control functions, U is also
a Banach space, h(t) ∈ C(J, J), f : J × X × X → X is a continuous nonlinear
mapping, and B is a bounded linear operator from U to X, 0 = t0 < t1 < t2 <
· · · < tm < tm+1 = a , Ik, k = 1, 2, · · · ,m are impulsive functions, m ∈ N. The
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existence of mild solutions to non-autonomous impulsive evolution equations (1.1)
is proved by using the Krasnoselskii’s fixed point theorem as well as the theory
of evolution family. In addition, the conditions of approximate controllability are
given by using the resolvent operator. In particular, the nonlocal item g is divided
into Lipschitz continuous and completely bounded. The approximate controllability
of the evolution equation with impulse is studied, which makes the application of
the evolution equation more universal and representative. An example is given as
an application of the results. Compared with Yang [18] and Luo [24], the equation
in this paper has more universality and generality. Yang [18] and Luo [24] can be
considered as a special case of this article.

The rest of this paper is organized as follows. In Section 2, we introduce some
basic definitions, lemmas and properties. The existence of mild solutions as well
as approximate controllability for evolution equation (1.1) is discussed by using the
nonlinear function and the control operator in Section 3. We give an example to
illustrate the feasibility of our results in the last section.

2. Preliminaries

Let X and U be two real Banach spaces with norms ∥ · ∥ and ∥ · ∥U . We denote
by C(J,X) the Banach space of all continuous functions from interval J into X
equipped with the supremum norm

∥u∥C = supt∈J ∥u(t)∥, u ∈ C(J,X),

and by Lp(X) the Banach space of all X-valued p-order Bochner integrable functions
on J equipped with the norm

∥f∥Lp =
(∫ b

0
∥f(t)∥pdt

) 1
p

for p ⩾ 1.

We put J0 = [0, t1], and Jk = (tk, tk+1] , k = 1, · · · ,m. Let PC(J,X) := {u : J →
X : u be continuous on Jk, and the right limit u

(
t+k
)
exists, k = 1, 2, · · · ,m}. It is

easy to check that PC(J,X) be a Banach space endowed with the norm ∥u∥PC =
sup{∥u(t)∥, t ∈ J} and C(J,X) ⊆ PC(J,X) ⊆ L1(J,X).

Suppose that a family of linear operators {A(t) : 0 ≤ t ≤ a} satisfies the following
assumptions:

(A1) The family {A(t) : 0 ≤ t ≤ a} is a closed linear operator;
(A2) for each t ∈ [0, a] , the resolvent R(λ,A(t)) = (λ−A(t))−1 of linear operator
A(t) exists for all λ such that Reλ ⩽ 0, and there also exists K > 0 such that
∥R(λ,A(t))∥ ⩽ K/(|λ|+ 1);
(A3) there exist 0 < δ ⩽ 1 and K > 0 such that∥∥(A(t)−A(s))A−1(τ)

∥∥ ⩽ K|t− s|δ for all t, s and τ ∈ [0, a];
(A4) for each t ∈ [0, a] and some λ ∈ ρ(A(t)), the resolvent set R(λ,A(t)) of linear
operator A(t) is compact.

Since these conditions, we know that the family {A(t) : 0 ⩽ t ⩽ T} generates
a unique linear evolution system, or called a linear evolution family {H(t, s) : 0 ⩽
s ⩽ t ⩽ T}, and there exists a family of bounded linear operators {Ψ(t, τ) | 0 ⩽ τ ⩽
t ⩽ T} with norm ∥Ψ(t, τ)∥ ⩽ C|t− τ |δ−1 such that H(t, s) can be represented as

H(t, s) = e−(t−s)A(t) +

∫ t

s

e−(t−τ)A(τ)Ψ(τ, s)dτ, (2.1)
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where e−τA(t) denotes the analytic semigroup with infinitesimal generator (−A(t)).

Lemma 2.1. [14] The family of linear operators {H(t, s) : 0 ⩽ s ⩽ t ⩽ T} satisfies
the following conditions:

(i) the mapping (t, s) → H(t, s)x is continuous, for each x ∈ X, H(t, s) ∈ L(X)
and 0 ≤ s ≤ t ≤ T ;
(ii) H(t, s)H(s, τ) = H(t, τ) for 0 ≤ τ ≤ s ≤ t ≤ T , and H(t, t) = I;
(iii) H(t, s) is a compact operator whenever t− s > 0;
(iv) There holds

∥H(t+ h, τ)−H(t, τ)∥ ≤ Khγ

|t− τ |γ
, for 0 < h < 1, 0 < γ < 1 and t− τ > h.

Condition (A4) ensures the generated evolution operator satisfies (iii) (see [12],
Proposition 2.1). Hence, there exists a constant M ≥ 1, such that

∥H(t, s)∥ ≤M for all 0 ≤ s ≤ t ≤ T. (2.2)

Definition 2.1. [14] The evolution family {H(t, s) : 0 ⩽ s ⩽ t ⩽ T} is continuous
and maps bounded subsets of X into pre-compact subsets of X.

Lemma 2.2. [18] For each t ∈ [0, a] and some λ ∈ ρ(A(t)), if the resolvent
R(λ,A(t)) is a compact operator, then H(t, s) is a compact operator whenever 0 ≤
s < t ≤ a.

Lemma 2.3. [18] Let {H(t, s), 0 ⩽ s ⩽ t ⩽ a} be a compact evolution system in X.
Then for each s ∈ [0, a], t 7→ H(t, s) is continuous by operator norm for t ∈ (s, a].

Let Y be another separable reflexive Banach space, whose norm is also denoted
by ∥·∥, in which the control function v(t) takes its values, U is a bounded subset of Y.
Denoted by Pc(Y ) a class of nonempty closed and convex subsets of Y. We suppose
that the multi-valued map ψ : J → Pc(Y ) is graph-measurable, and ψ(·) ⊂ U . The
admissible control set Vad is defined by

Vad = {v ∈ Lp(J, U) : v(t) ∈ ψ(t), a.e.t ∈ J} , p > 1.

Obviously, Vad ̸= ∅ (see [20]) and Vad ⊂ Lp(J, Y )(p > 1) is bounded, closed and
convex. For any r > 0, let Ωr := {u ∈ C(J,X) : ∥u(t)∥ ≤ r, t ∈ J}.

Definition 2.2. A function u ∈ C(J,X) is said to be a mild solution of nonlocal
evolution equation (1.1), if for any v ∈ L2(J, U), u(t) satisfies the integral equation

u(t) = H(t, 0) (u0 + g(u)) +

∫ t

0

H(t, s)[f(s, u(s), u(h(s))) +Bv(s)]ds

+
∑

0<tk<t

H (t, tk) Ik (u (tk)) , t ∈ J.

Lemma 2.4. [18] (Krasnoselskii’s fixed point theorem). Let W be a closed, convex
and nonempty subset of Banach space X. Let operators Q1, Q2 :W → X satisfy

(i) if x, y ∈W , then Q1x+Q2y ∈W ;
(ii) Q1 is a contraction;
(iii) Q2 is compact and continuous.
Then the operator Q := Q1 +Q2 has at least one fixed point in W .
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Lemma 2.5. [18] If Ω is a compact subset of a Banach space X, its convex closure
is compact.

Definition 2.3. Let u be a mild solution of evolution equation (1.1) correspond-
ing to the control v ∈ L2(J, U). Nonlocal evolution equation (1.1) is said to be
approximately controllable on the interval J if Ka(f) = X, where the set

Ka(f) =
{
u(a) ∈ X : v ∈ L2(J, U)

}
is called the reachable set of nonlocal evolution equation (1.1).

3. Main results

In this section, we will present and prove the approximate controllability of nonlocal
evolution euation (1.1) by using the Krasnoselskii’s fixed point theorem and the
theory of evolution system. For this purpose, we first introduce the following two
operators defined on Banach space X by

Γa0 =

∫ a

0

H(a, s)BB∗H∗(a, s)ds, (3.1)

R (λ,Γa0) = (λI + Γa0)
−1
, λ > 0, (3.2)

where B∗ and H∗(t, s) denote the adjoint operators of B and H(t, s). Let u be the
mild solution of evolution equation (1.1) corresponding to the control v ∈ L2(J, U).
Then, the evolution equation (1.1) is said to be approximately controllable on in-
terval [0, a] if for every desired final state ua ∈ X and ϵ > 0, there exists a control
v ∈ L2(J, U) such that u satisfies ∥u(a)− ua∥ < ϵ.

Next, we will show that for every λ > 0 and ua ∈ X there exists a continuous
function u ∈ C(J,X) such that

u(t) = H(t, 0) (u0 + g(u)) +

∫ t

0

H(t, s)[f(s, u(s), u(h(s))) +Bvλ(s)]ds

+
∑

0<tk<t

H (t, tk) Ik (u (tk)) , t ∈ J, (3.3)

where the function vλ is the control function defined by

vλ = B∗H∗(a, t)R(λ,Γa0)z(u(·)), (3.4)

and

z(u(·)) = ua −
∫ a

0

H(a, s)f(s, u(s), u(h(s)))ds−H(a, 0)(u0 + g(u)). (3.5)

First, we consider the existence of mild solutions of the non-autonomous problem
(1.1). So we further assume the following conditions:

(H1) There exists a function ψ ∈ L (J,R+)such that ∥Bv(t)∥ ≤ ψ(t) for all v ∈
L2(J, U) and t ∈ J ;
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(H2) the function f : J ×X ×X → X satisfies :
(i) for every t ∈ J , the function f(t, ·, ·) : X ×X → X is continuous and for
each (u, v) ∈ X ×X, the function f(·, u, v) : J → X is strongly measurable;
(ii) for any r > 0, there exists a function φ ∈ L1 (J,R+) such that
sup {∥f(t, u, u)∥ : ∥u∥ ⩽ r} ⩽ φ(t), for all u ∈ Ωr, t ∈ J and

limr→+∞
∥φ∥L1+∥ψ∥Lp

r = σ <∞,
(H3) the function g : PC(J,X) → X is supposed to be g(0) = 0 and Lipschitz

continuous with a Lipschitz constant x > 0 such that
∥g(u)− g(v)∥ ⩽ x∥u− v∥PC , ∀u, v ∈ Ωr,

(H4) for k ∈ {1, 2, · · · ,m}, the function Ik : X → X and there exists a constant
yk > 0 such that

∥Ik(u)− Ik(v)∥ ⩽ yk∥u− v∥, ∀u, v ∈ X.

Theorem 3.1. Let the evolution family {H(t, s) : 0 ⩽ s ⩽ t ⩽ T} generated by
{A(t) : 0 ≤ t ≤ a} be compact. Suppose that the assumption (H1) − (H4) are also
satisfied. Then the evolution equation (1.1) has at least one mild solution on J
provided that

Mx+Mσ +M
∑

1<k<M

yk < 1. (3.6)

Proof. Defined the operator Q = Q1 +Q2, where

(Q1u)(t) = H(t, 0)(u0 + g(u)) +
∑

0<tk<t

H (t, tk) Ik (u (tk)) , t ∈ J, (3.7)

(Q2u)(t) =

∫ t

0

H(t, s)[Bv(s) + f(s, u(s), u(h(s)))]ds, t ∈ J. (3.8)

By Definition 2.2, we can know that the mild solution of evolution equation
(1.1) is equivalent to the fixed point of operator Q. In the following, we will prove
that the operator Q admits a fixed point by applying the Krasnoselskii’s fixed point
theorem. The proof is divided into five steps.

Step 1. Q (Ωr) ⊆ Ωr for some r > 0.
If this is not true, for each r > 0, there exists ur ∈ Ωr, ∥(Qur)t∥ > r for all

t ∈ J . From the definition of Q and hypotheses (H1)− (H4), we have

r < ∥(Qur)t∥ ≤ ∥ H(t, 0)(u0 + g(u))∥+
∥∥∥ ∑

0<tk<t

H (t, tk) Ik (ur (tk))
∥∥∥

+
∥∥∥∫ t

0

H(t, s)[Bv(s) + f(s, ur(s), ur(h(s)))]ds
∥∥∥

≤M∥u0∥+M(xr + ∥g(0)∥) +M

m∑
k=1

(
ykr + ∥Ik(0)∥

)
+M∥φ∥L1 +M∥ψ∥Lp .

Dividing on both sides by r and taking the lower limit as r −→ +∞, we obtain

Mx+Mσ +M
∑

1<k<M

yk < 1,
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which is a contradiction to the condition in Theorem 3.1. Thus, Q (Ωr) ⊆ Ωr for
some r > 0 .

Step 2. Q1 : Ωr → Ωr is a contraction operator.
For any t ∈ J , u, v ∈ Ωr, (3.7), (2.2), (H3) and (H4) imply

∥(Q1u) (t)− (Q1v) (t)∥

⩽ ∥H(t, 0)(g(u)− g(v))∥+

∥∥∥∥∥ ∑
0<tk<t

H (t, tk) (Ik (u (tk))− Ik (v (tk)))

∥∥∥∥∥
⩽Mx∥u− v∥PC +M

m∑
k=1

yk∥u− v∥PC ,

which yields that

∥Q1u−Q1v∥PC ⩽

(
Mx+M

m∑
k=1

yk

)
∥u− v∥PC .

Hence Q1 is a contraction operator in Ωr.
Step 3. Q2 : Ωr → Ωr is continuous. Let {un}∞n=1 ⊂ C(J,X) with limn→+∞ un

= u in C(J,X). Then by the continuity of f , we have

lim
n→+∞

f (s, un(s), un(h(s))) = f(s, u(s), u(h(s))), ∀s ∈ J. (3.9)

In addition, since

∥f (s, un(s), un(h(s)))− f(s, u(s), u(h(s)))∥ ≤ 2φ(s), (3.10)

and the Lebesgue’s dominated convergence theorem follows that

∥(Q2un)(t)− (Q2u)(t)∥ ≤
∫ t

0

∥H(t, s)∥∥f (s, un(s), un(h(s)))

−f(s, u(s), u(h(s)))∥ds

≤ M

∫ t

0

∥f (s, un(s), un(h(s)))− f(s, u(s), u(h(s)))∥ds

→ 0 as n→ ∞,

which means that

∥(Qun)− (Qu)∥C = sup
t∈J

∥(Qun) (t)− (Qu)(t)∥ → 0 as n→ ∞. (3.11)

Therefore, by (3.11), we know that Q2 : Ωr → Ωr is continuous.
Step 4. Q2 is equi-continuous in Ωr. For any u ∈ Ωr and 0 ≤ t1 ≤ t2 ≤ a, by

(3.8) and (H1)− (H4), we have

∥(Q2u) (t2)− (Q2u) (t1) ∥ = ∥
∫ t2

0

H (t2, s) [f(s, u(s), u(h(s))) +Bv(s)]ds

−
∫ t1

0

H (t1, s) [f(s, u(s), u(h(s))) +Bv(s)]ds∥
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≤
∫ t1

0

∥H (t2, s)−H (t1, s)∥ ∥f(s, u(s), u(h(s)))∥ds

+

∫ t1

0

∥H (t2, s)−H (t1, s)∥ ∥Bv(s)∥ds

+

∫ t2

t1

∥H(t2, s)∥∥f(s, u(s), u(h(s)))∥ds

+

∫ t2

t1

∥H(t2, s)∥∥Bv(s)∥ds

≤
∫ t1

0

∥H (t2, s)−H (t1, s)∥

∥Bv(s) + f(s, u(s), u(h(s)))∥ds

+

∫ t2

t1

∥H(t2, s)∥∥Bv(s) + f(s, u(s), u(h(s)))∥ds

:= I1 + I2,

where
I1 =

∫ t1
0

∥H (t2, s)−H (t1, s)∥ ∥Bv(s) + f(s, u(s), u(h(s)))∥ds;
I2 =

∫ t2
t1

∥H(t2, s)∥∥Bv(s) + f(s, u(s), u(h(s)))∥ds.
If t1 ≡ 0, and 0 < t2 ≤ a, the conclusion is obvious. If 0 < t1 < a, we choose

ε ∈ (0, t1) small enough, by the conditions (H0), (H1) and (H2), we have

I1 ≤
∫ t1−ε

0

∥H (t2, s)−H (t1, s)∥ ∥f(s, u(s), u(h(s)))∥ds

+

∫ t1

t1−ε
∥H (t2, s)−H (t1, s)∥ ∥f(s, u(s), u(h(s)))∥ds

≤ sup
s∈[0,t1−ε]

∥H (t2, s)−H (t1, s)∥L(X)

∫ t1−ε

0

[φ(s) + ψ(s)]ds

+M

∫ t1

t1−ε
φ(s)ds+M

∫ t1

t1−ε
ψ(s)ds→ 0 as t2 − t1 → 0 and ε→ 0,

I2 ≤M
∫ t2

t1

φ(s) + ψ(s)ds→ 0, as t2 − t1 → 0.

Therefore, ∥(Q2u) (t2)− (Q2u) (t1)∥ → 0, as t2 − t1 → 0, which means that the
operator Q2 : Ωr → Ωr is equi-continuous.

Step 5. The set W (t) := {(Q2u) (t) : u ∈ Ωr} is relatively compact in X for
each t ∈ J . Obviously, the set W (0) = {(Q2u) (0) : u ∈ Ωr} is relatively compact in
X. Let t ∈ (0, a], for any x ∈ Had,u ∈ Ωr and ϵ ∈ (0, t− s), we define an operator
Qϵ2 by

(Qϵ2u) (t) :=

∫ t−ϵ

0

H(t, s)[Bv(s) + f(s, u(s), u(h(s)))]ds.

It follows from the boundedness of Had and (H1) that the set Zϵ = {H(t, s)[Bv(s)+
f(s, u(s), u(h(s)))] : 0 ⩽ s < t − ϵ} is relatively compact and depend on the
compactness of H(t, s)(t − s > 0). Then, co (Wϵ) is a compact set depending
on Lemma 2.5. By the mean value theorem of Bochner integrals, we can get
(Qϵ2u) (t) ∈ (t− ϵ)co (Wϵ) for all t ∈ J . Thus, the set Wϵ(t) = {(Qϵ2u) (t) : u ∈ Ωr}
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is relatively compact in X for every t ∈ J . Moreover, by (3.8), (2.2) and (H1), we
have

∥(Q2u) (t)− (Qϵ2u) (t)∥

=∥
∫ t

0

H(t, s)[Bv(s) + f(s, u(s), u(h(s)))]ds

−
∫ t−ϵ

0

H(t, s)[Bv(s) + f(s, u(s), u(h(s)))]ds∥

≤
∫ t

t−ϵ
∥H(t, s)[Bv(s) + f(s, u(s), u(h(s)))]∥ds

≤M
∫ t

t−ϵ
φ(s) + ψ(s)ds,

which means that limϵ→0 ∥(Q2u) (t)− (Qϵ2u) (t)∥ = 0. So we have proved that there
is a family of relatively compact sets Wϵ(t) arbitrarily close to the set W (t). Thus,
the set W (t) is relatively compact in X for every t ∈ [0, a].

By Steps 3-5, thanks to the Ascoli-Arzela theorem, we deduce that the operator
Q2 : Ωr → Ωr is compact and continuous. By the Krasnoselskii’s fixed point
theorem, we can get the operator Q has at least one fixed point in Ωr, which is
the mild solution of the evolution equation (1.1) on J . This completes the proof of
Theorem 3.1.

Next, we present an existence result for control problem (1.1) when the nonlocal
function g is completely continuous in PC(J,X).

(H3)
′
The function g : PC(J,X) → X is completely continuous.

Remark 3.1. From (H3)
′, the set {g(u) : u ∈ Ωr} is completely bounded. Hence

supu∈Ωr
∥g(u)∥ exists and limr→∞

supu∈Ωr
∥g(u)∥

r = 0.

Theorem 3.2. Let the conditions (H1), (H2), (H3)
′ and (H4) hold. If

Mσ +M
∑

1<k<M

yk < 1, (3.12)

then the control problem (1.1) has at least one mild solution in Ωr.

Proof. For every v ∈ Vad, we define an operator P = P1 + P2: Ωr → PC(J,X),
where

(P1u) (t) =
∑

0<tk<t

H (t, tk) Ik (u (tk)) , t ∈ J,

(P2u) (t) = H(t, 0) (u0 + g(u)) +

∫ t

0

H(t, s)[f(s, x(s), x(h(s))) +Bv(s)]ds, t ∈ J.

By Definition 2.2, we can know the mild solution of (1.1) is equivalent to the fixed
point of P on J . The same is true for Theorem 3.1, we can prove that P (Ωr) ⊆
Ωr, P1 : Ωr → Ωr is a contraction operator and P2 : Ωr → Ωr is compact and
continuous. By Lemma 2.4, the operator P admits a fixed point in Ωr. Here, we
omit the detail. This completes the proof of Theorem 3.2.
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Theorem 3.3. Let the evolution family {H(t, s) : 0 ⩽ s ⩽ t ⩽ T} generated by
{A(t) : 0 ≤ t ≤ a} be compact. If the assumptions (H1), (H3), (H4) and the
following assumptions are satisfied:

(H2)
′ The function f : J ×X ×X → X satisfies :
(i) for every t ∈ J , the function f(t, ·, ·) : X ×X → X is continuous and for
each (u, v) ∈ X ×X , the function f(·, u, v) : J → X is strongly measurable;
(ii) for any r > 0, there exists a function φ ∈ L2 (J,R+) such that
sup {∥f(t, u, u)∥ : ∥u∥ ⩽ r} ⩽ φ(t), for all u ∈ Ωr, t ∈ J and

limr→+∞
∥φ∥L2+∥ψ∥Lp

r = σ <∞,
(H5) λR (λ,Γa0) → 0 as λ→ 0+ in the strong operator topology.

Then the evolution equation (1.1) is approximately controllable on J .

Proof. It is easily to know that the assumption (H2)
′ ⇒ (H2). Therefore, by

Theorem 3.1, we know that the evolution equation (1.1) has at least one mild
solution uλ ∈ Ωr, which means that

uλ(t) =H(t, 0) (u0 + g(uλ)) +

∫ t

0

H(t, s)[f(s, uλ(s), uλ(h(s))) +Bvλ(s)]ds

+
∑

0<tk<t

H (t, tk) Ik (uλ (tk)) , t ∈ J,
(3.13)

with
vλ(t) = B∗H∗(a, t)R (λ,Γa0) z (uλ(·)) , (3.14)

and

z (uλ(·)) =ua −
∫ a

0

H(a, s)f (s, uλ(s), uλ(h(s))) ds

−
∑

0<tk<a

H (a, tk) Ik (uλ (tk))−H(a, 0)(u0 + g(uλ)).
(3.15)

Therefore, by (3.13), (3.14) and (3.15), we can combine with an easy computation
to get

uλ(a) =H(a, 0)(u0 + g(uλ)) +

∫ a

0

H(a, s) [f (s, uλ(s), uλ(h(s))) +Bvλ(s)] ds

+
∑

0<tk<a

H (a, tk) Ik (uλ (tk))

=ua − z (uλ(·)) +
∫ a

0

H(a, s)BB∗H∗(a, s)R (λ,Γa0) z (uλ(·)) ds

=ua − z (uλ(·)) + Γa0R (λ,Γa0) z (uλ(·))
=ua − (λI + Γa0)R (λ,Γa0) z (uλ(·)) + Γa0R (λ,Γa0) z (uλ(·))
=ua − λR (λ,Γa0) z (uλ(·)) .

(3.16)
According to the condition (H2)

′, one gets that(∫ a

0

∥f (s, uλ(s), uλ(h(s)))∥2 ds
) 1

2

≤
(∫ a

0

φ2(s)ds

) 1
2

<∞.
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Then the boundedness of the sequence {f (·, uλ(·), uλ(·)) | λ > 0} in L2(J,X) shows
that there exists a subsequence of {f (·, uλ(·), uλ(·)) | λ > 0} which converges weakly
to some K(·) ∈ L2(J,X). Define

ω := ua −
∫ a

0

H(a, s)K(s)ds. (3.17)

It follows that

∥z (uλ)− ω∥ ≤∥H(a, 0)(u0 + g(uλ))∥

+

∥∥∥∥∫ a

0

H(a, s) [f (s, uλ(s), uλ(h(s)))−K(s)] ds

∥∥∥∥ . (3.18)

According to the fact, the evolution family H(t, s) is compact operators for 0 ≤ s <
t ≤ a. This means that the mapping

k(t) →
∫ t

0

H(t, s)k(s)ds

is compact for t ∈ J , which implies that∫ a

0

H(a, s) [f (s, uλ(s), uλ(h(s)))−K(s)] ds→ 0 as λ→ 0+. (3.19)

Hence, from (3.16) and (3.19), we know that

∥z (uλ)− ω∥ → 0 as λ→ 0+. (3.20)

In the following, (3.16), (3.20) and assumption (H5) imply that

∥uλ(a)− ua∥ ≤ ∥λR (λ,Γa0) z (uλ)∥
≤ ∥λR (λ,Γa0)ω∥+ ∥λR (λ,Γa0)∥ · ∥z (uλ)− ω∥
→ 0 as λ→ 0+.

(3.21)

In conclution, the evolution equation (1.1) is approximately controllable. The proof
is complete.

4. Example

In this section, we provide a correct example to illustrate our abstract results.

Example 4.1. Consider the following non-autonomous partial differential equation
with nonlocal problem:

∂
∂tu(x, t) =

∂2

∂2xu(x, t) + a(t)u(x, t) + t2 sin(2πt)
1+|u(x,t)| ·

1
1+|u(x,sin t)|

+ 2v(x, t), x ∈ [0, π], t ∈ J\{ 1
2},

u(0, t) = u(1, t) = u(π, sin t) = 0, t ∈ J\{ 1
2},

u(x, 0) = u0(x) +
∑2
i=1 ci[sin (u(x, ti))

− sin (u (0, ti))], 0 < t1 < t2 < a, x ∈ [0, π],

∆u
(
x, 12

)
=

|u(x, 12 )|
2+|u(x, 12 )|

,

(4.1)
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where J := [0, a], a > 1
2 , a(t) : J → R is a continuously differentiable function and

satisfies
amin := min

t∈[0,1]
a(t) < 1, (4.2)

and a > 0 is a constant, v ∈ L2
(
J, L2(0, π;R)

)
. Let X = L2(0, π;R) with the norm

∥ · ∥2 and inner product ⟨·, ·⟩. Consider the operator A on X defined by

Au :=
∂2

∂x2
u, u ∈ D(A),

where
D(A) :=

{
u ∈ L2(0, π;R), u′′ ∈ L2(0, π;R), u(0) = u(π) = 0

}
.

The A generates a compact and analytic C0-semigroup in C, A has a discrete
spectrum, and its eigenvalues are −n2, n ∈ N+ with the corresponding normalized

eigenvectors vn(x) =
√

2
π sin(nx). Define the operator A(t) on A by

A(t)u = Au− a(t)u,

with domain
D(A(t)) = D(A), t ∈ [0, 1].

The family {A(t) : 0 ≤ t ≤ a} generates an strongly continuous evolution family
{H(t, s) : 0 ≤ s ≤ t ≤ a} defined by

H(t, s)u =

∞∑
n=1

e−(
∫ t
s
a(τ)dτ+n2(t−s)) ⟨u, vn⟩ vn, 0 ≤ s ≤ t ≤ 1, u ∈ X. (4.3)

A direct calculation gives

∥H(t, s)∥L(X) ≤ e−(1+amin)(t−s), 0 ≤ s ≤ t ≤ 1.

(4.2) and (4.3) mean that

M := sup
0≤s≤t≤a

∥H(t, s)∥L(X) = 1.

(see [12])
For any t ∈ [0, a], we define

u(t)(x) = u(x, t);

f(t, u(t), u(h(t))) =

√
u(x, t)

1 + t2
· 1

1 + |u(x, sin t)|
;

g(u(t))(x) =

2∑
i=1

ci [sin (u (x, ti))− sin (u (0, ti))] ;

Bv(t)(x) = 2v(x, t);

Iku

(
x,

1

2

)
=

∣∣u (x, 12)∣∣
2 +

∣∣u (x, 12)∣∣ .
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For any r > 0, let Ωr := {u ∈ PC(J,X) : ∥u(t)∥PC ≤ r, t ∈ J}. For any u, v ∈ Ωr
and t ∈ J , we have

∥f(t, u(t), u(h(t)))∥ = ∥
√
u(x, t)

1 + t2
· 1

1 + |u(x, sin t)|
∥ ≤

√
r;∥∥∥∥Ik (u(x, 12

))
− Ik

(
v

(
x,

1

2

))∥∥∥∥ =

∥∥∥∥∥
∣∣u (x, 12)∣∣

2 +
∣∣u (u, 12)∣∣ −

∣∣v (v, 12)∣∣
2 +

∣∣v (x, 12)∣∣
∥∥∥∥∥

⩽
1

2

∥∥∥∥u(x, 12
)
− v

(
x,

1

2

)∥∥∥∥ .
We know g : PC(0, a;X) → X is a continuous function defined by

g(u)(x) =

q∑
i=1

ci [sin (u (ti)) (x)− sin (u (ti)) (0)] , 0 < t1 < t2 < a, 0 ≤ u ≤ π,

where sin(u(t))(x) = sin(u(x, t)), 0 ≤ t ≤ a, and 0 ≤ x ≤ π. It follows from
| sin(a) − sin(b)| ≤ |a − b| which holds for all a, b ∈ R that the function g satisfies
the Lipschitz constant l = max {|ci| , i = 1, 2}.

Based on the definition of nonlinear term f and the bounded linear operator
A combined with the above discussion, we can easily verify that the assumptions
(H1)− (H4) hold true when ψ(t) = 2v(t).

Therefore, the non-autonomous partial differential equation (4.1) is equivalent
to the evolution equation (1.1). According to theorem 3.1, we know that (4.1) has
at least one mild solution u ∈ [C(0, π)× (0, a)]. By theorem 3.3, we know that (4.1)
is approximately controllable on J .
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