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Stability and Bifurcation Analysis of the
Nutrient-Microorganism Model∗

Ranchao Wu 1,† and Xiaoyu Qin1

Abstract Stability analysis and bifurcation of the nutrient-microorganism
model are presented in this paper. It is found that the model could experience
the changes of the equilibrium points and the saddle-node, the Hopf and the
codimension-2 Bogdanov-Takens bifurcations. The induced complex dynamics
are also illustrated, by virtue of theory like the Sotomayor’s theorem, the
normal form and the universal unfolding. From the obtained results, some
insights into interaction between the nutrient and the microorganism can be
given. Further, numerical simulation is carried out to verify the theoretical
results.
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1. Introduction

The relationship in populations of nature has always been a hot topic in dynam-
ics, in which the relationship between predator and prey has attracted researchers’
attention. In the 1920s, a mathematical model [1, 2] between predator and prey
was proposed by Lotka and Volterra. Since then, scientists have conducted more
in-depth research on mathematical models of population relations. As a special
predator-prey model, nutrient-microorganism model has also been considered ex-
tensively.

In 1996, Van Cappellen et al. [3] proposed that many microorganisms and
chemical substances have taken their place in the circulation of substance. As we
know, the interaction between microorganisms and nutrients is generally established
through a decrease in nutrients and an increase in the number of microorganisms
that feed on nutrients. For deeper exploration into the behavior of microorganisms
and chemicals, Baurmann and Feudel established the model [4],

dB

dτ
= µBaN −mB,

dN

dτ
= ϕ(N̂ −N)− φ

B

B + L
BN, (1.1)
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where N represents the concentration of nutrients(mol/m3), B is a bacterial pop-
ulation density that feeds on nutrients(kg biomass/m3), a is the growth rate of
bacteria, µ represents the conversion rate of biomass, m is the mortality rate of
bacteria, φ is the capture rate of bacteria, and L is a semi saturated state constant.
All parameters here are positive constants.

In the model (1.1), there are two ways to input nutrients. One is to input
nutrients on the surface of the sediment, and the other is to input nutrients to the
deeper sediment by bioirrigation technology. Because the depth of sediment affects
the coverage rate of biological irrigation, the flux ϕ(N̂ −N) is used to deal with the
diffusion term. Furthermore, it is assumed that only active portion of the bacteria
is considered.

For model (1.1) with diffusion, Baurmann and Feudel [4] explore the turing pat-
terns through a series of analysis and demonstration. In the same year, Baurmann et
al. [5] proposed a new model by reconsidering the dormant bacteria and the activa-
tion of dormant bacteria into model (1.1). Then Turing instabilities and formation
was found. Schmitz et al. [6] introduced a three species model in which nutrients are
consumed by two competing populations of microbes in a marine sediment. Wet-
zel [7] investigated pattern formation of the benthic nutrient-microorganism model
by Landau reductions and numerical methods and it is concluded that the system
has an unstable state which means turing patterns start to exist for relatively small
rates of food supply and ingestion. Furthermore, global bifurcation diagram for so-
lutions over a bounded 2D domain is obtained. In Qian et al. [8], the local and the
global bifurcations were considered in the diffusive nutrient-microorganism model
by stability analysis, degree theory and bifurcation method. Moreover, the direc-
tion and the stability of the Hopf bifurcation was also obtained by considering the
diffusive sediment model with no-flux boundary conditions in [9].

The delayed nutrient-microorganism model was put forwarded in [10] and its
complex dynamical behavior was explored, including the codimension-2 bifurcation
the Hopf-Hopf bifurcation. The resulting dynamical classification from bifurcation
was also obtained by using the amplitude equations. Further results about the Hopf
bifurcation in delayed nutrient-microorganism model with network structure were
presented in [11] and dynamics of the diffusive nutrient-microorganism model with
spatially heterogeneous environment was established in [12]. As further, the global
existence and spatiotemporal pattern formation of the model with nutrient-taxis
in the sediment [13] were given. The Hopf bifurcation of the diffusive nutrient-
microorganism model with time delay was considered by applying the normal form
theory and center manifold theorem [14]. For more detailed information about the
nutrient-microorganism model, we refer to [15].

Although various dynamical results about the nutrient-microorganism model
with the diffusion term, the delay and the taxis were reported, the bifurcation anal-
ysis for model (1.1) is also interesting and can be further explored in detail. There
are few results in this area, then in this work qualitative analysis and bifurcation
of model (1.1) will be carried out. To this end, make the following dimensionless
transformation to system (1.1)

N =
m

µ
v, N̂ =

m

µ
α, B =

ϕ

φ
u, L =

ϕ

φ
K, τ =

1

ϕ
t, β =

m

ϕ
,
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then system (1.1) becomes

u̇ = βu(
uv

u+ k
− 1),

v̇ = α− v − u2v

u+ k
, (1.2)

where α, β and k are positive constants. In order to explore the relationship between
nutrients and microorganisms in more detail, we will analyze the dynamic behavior
of the model (1.2) in this paper. We mainly focus on the analysis on existence
and the stability of positive equilibrium points, and the bifurcation caused by the
instability of positive equilibrium points, including saddle-node bifurcation, Hopf
bifurcation and Bogdanov-Takens bifurcation.

The paper is organized as follows. In Section 2, we focus on the existence
of equilibrium points, with the parameter conditions for the existence of different
equilibria. In Section 3, the stability of equilibrium points is analyzed by stability
analysis. In Section 4, the different bifurcations, such as the saddle-node bifurca-
tion, the Hopf bifurcation and the Bogdanov-Takens bifurcation, induced by the
instability of equilibria are described by employing bifurcation theory, such as the
center manifold reduction and the normal form [16], the Sotomayor’s theorem [17].
Numerical results are given to verify the theoretical analysis in Section 5. Finally,
some conclusions are drawn in Section 6.

2. Existence of equilibria

In this section, we consider the existence of equilibria of system system (1.2). First
note that the system has the boundary equilibria E0 = (0, α). As for the positive
equilibrium (u, v) of system (1.2), it satisfies

uv

u+ k
− 1 = 0,

α− v − u2v

u+ k
= 0,

then

v =
u+ k

u
,

and u satisfies

g(u) = u2 + (1− α)u+ k = 0. (2.1)

The number of equilibrium points can be determined by judging the sign of
discriminant of g(u). Then, we have the following result about the existence of
equilibrium points of system (1.2).

Theorem 2.1. The existence of equilibrium points in model (1.2) is as follows:

(i) If 0 < α < 1 + 2
√
k, there is only one boundary equilibrium E0(0, v0) = (0, α)

for system (1.2).

(ii) If α = 1 + 2
√
k, there is one boundary equilibrium E0(0, v0) = (0, α) and one

positive equilibrium E1(u1, v1) = (
√
k, 1 +

√
k) for system (1.2).
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(iii) If α > 1 + 2
√
k, there is one boundary equilibrium E0(0, v0) = (0, α) and

two positive equilibriums E2(u2, v2) and E3(u3, v3) for system (1.2), where

u2 =
α−1+

√
(1−α)2−4k

2 , u3 =
α−1−

√
(1−α)2−4k

2 , vi =
ui+k
ui

(i=2,3).

Proof. From the above analysis, note that there is only one boundary equilibrium
E0 = (0, α) in system (1.2). From equation (2.1), the discriminant of g(u) is

∆ = (1− α)2 − 4k.

Regarding ∆ as the function of α, then ∆ has two different roots α1 = 1 + 2
√
k

and α2 = 1 − 2
√
k. If α = 1 + 2

√
k, then ∆ = 0 and system (1.2) has one

positive equilibrium E1(u1, v1) = (
√
k, 1 +

√
k). If α = 1 − 2

√
k, the obtained

equilibrium is negative, which will have no practical sense and is not considered. If
0 < α < 1+ 2

√
k, ∆ < 0. The function g(u) = u2 + (1−α)u+ k = 0 does not have

any positive real root, system (1.2) has no positive equilibrium. If α > 1 + 2
√
k,

∆ > 0. The function g(u) = u2 + (1 − α)u + k = 0 has two positive real roots
and system (1.2) has two positive equilibriums E2(u2, v2) and E3(u3, v3), where

u2 =
α−1+

√
(1−α)2−4k

2 , u3 =
α−1−

√
(1−α)2−4k

2 , vi =
ui+k
ui

(i = 2, 3).

Remark 2.1.

(i) It is not difficult to note that the first quadrant is invariant for system (1.2),
that is, the orbits starting from the positive initial states will be always posi-
tive.

(ii) When u = 0 and v = α, this is a critical state, where the microorganisms in
the seawater disappear and the concentration of nutrients reaches the highest
level.

3. Stability of equilibria

As for the stability of boundary equilibrium E0(0, α), we have the following result.

Theorem 3.1. The boundary equilibrium E0(0, α) of system (1.2) is a hyperbolic
stable node.

Proof. The Jacobian matrices of system (1.2) at E0 is

JE0
=

−β 0

0 −1

 .

It is obvious that the determinant value of Jacobian matrix of system (1.2) is
β and the trace is −(β + 1). Since β > 0 in the model, JE0 has two negative
eigenvalues −β and −1. Hence E0 is a hyperbolic stable node.

Next, we prove the stability of positive equilibrium E1.

Theorem 3.2. When α = 1 + 2
√
k, there is only one positive equilibrium E1 in

system (1.2). Then it follows that:

(i) If β = 2 + 1√
k
, E1 is a cusp of codimension two.

(ii) If β > 2 + 1√
k
, E1 is a saddle-node with a repelling parabolic sector.
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(iii) If 0 < β < 2 + 1√
k
, E1 is a saddle-node with an attracting parabolic sector.

Proof. Translating E1 to the origin by (x, y) = (u − u1, v − v1), system (1.2)
becomes

ẋ = a10x+ a01y + a20x
2 + a11xy + a30x

3 + a21x
2y + P1(x, y),

ẏ = b10x+ b01y + b20x
2 + b11xy + b30x

3 + b21x
2y +Q1(x, y), (3.1)

where P1(x, y) and Q1(x, y) are high order terms in (x, y) at least of three, and

a10 =
βk

u1 + k
, a01 =

βu1

v1
=

βu2
1

u1 + k
, a20 =

βk2v1
(u1 + k)3

, a11 =
βu1

u1 + k
(1 +

k

u1 + k
),

b10 = −1− k

u1 + k
, b01 = −1− u2

1

u1 + k
, b20 = − k2v1

(u1 + k)3
, b11 = −u1(u1 + 2k)

(u1 + k)2
,

b21 = − k2

(u1 + k)3
.

The Jacobian matrix of system (3.1) at origin O = (0, 0) is

JO =

a10 a01

b10 b01

 =

 βk
u1+k

βu1

v1

−u1+2k
u1+k −u1+v1

v1


After calculation, it follows that detJO = 0. Considering the sign of the trace of

JO,

trJO =
β
√
k − 1− 2

√
k

1 +
√
k

.

Hence, the relationship of sizes between β and 2 + 1√
k
determines the sign of

JO. We divide it into two cases.
(i) Assume β=2+ 1√

k
. Then trJO=0. It means JO has two zero eigenvalues.

Letting x = u, y = −a10u+v
a01

, system (3.1) is changed into

u̇ = v + c20u
2 + c11uv + P2(u, v),

v̇ = d20u
2 + d11uv +Q2(u, v), (3.2)

where P2(u, v) and Q2(u, v) are power series at least of the third order in (u, v),
and

c20 = a20 −
a11a10
a01

, c11 =
a11
a01

,

d20 = a10(a20 −
a11a10
a01

) + a01(b20 −
b11a10
a01

), d11 =
a11a10
a01

+ b11.

Then, we make the following transformation for system (3.2)

x = u,

y = v + c20u
2 + c11uv + P2(u, v),
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then system (3.2) becomes

ẋ = y,

ẏ = e20x
2 + e11xy + e02y

2 +Q3(x, y), (3.3)

where Q3(x, y) are power series at least of the third order in (x, y), and

e20 = d20, e11 = 2c20 + d11, e02 = c11.

Now, we introduce a new variable τ by dt = (1− e02x)dτ and get

dx

dτ
= (1− e02x)y,

dy

dτ
= (1− e02x)(e20x

2 + e11xy + e02y
2 +Q3(x, y)), (3.4)

where Q3(x, y) are power series at least of the third order in (x, y).
One more transformation (u, v) = (x, 1 − (1 − e02x)y) transforms system (3.4)

into

du

dτ
= v,

dv

dτ
= e20u

2 + e11uv +Q4(u, v), (3.5)

where Q4(u, v) are power series at least of the third order in (u, v), and

e20 = d20, e11 = 2c20 + d11.

After some calculation, one has

e20 = − 1 + 2
√
k√

k(1 +
√
k)

< 0,

e11 = − 2(1 + 2
√
k)√

k(1 +
√
k)2

< 0.

Therefore e20e11 ̸= 0. Then E1 is a cusp of codimension two. Item (i) is completed.

(ii) Assume β ̸=2+ 1√
k
. J0 has two different eigenvalues 0 and β

√
k−1−2

√
k

1+
√
k

. For

system (3.1), we make the transformation: x = u+ v, y = −u+ b10
a10

v. Then system
(3.1) is rewritten as

u̇ = c20u
2 + c11uv + c02v

2 + P5(u, v),

v̇ = d10v + d20u
2 + d11uv + d02v

2 +Q5(u, v), (3.6)

where P5(u, v) and Q5(u, v) are power series at least of the third order in (u, v),
and

c20 =
b10(a20 − a11)− a10(b20 − b11)

a10 + b10
,

c11 =
b10(2a20 + a11(

b10
a10

− 1))− a10(2b20 + b11(
b10
a10

− 1))

a10 + b10
,
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c02 =
b10(a20 + a11

b10
a10

)− a10(b20 + b11
b10
a10

)

a10 + b10
,

d20 =
a10(a20 − a11) + a10(b20 − b11)

a10 + b10
,

d11 =
a10(2a20 + a11(

b10
a10

− 1)) + a10(2b20 + b11(
b10
a10

− 1))

a10 + b10
,

d02 =
a10(a20 + a11

b10
a10

) + a10(b20 + b11
b10
a10

)

a10 + b10
.

Then, introducing a new variable τ by dτ = (a10 + b10)dt, we get

du

dτ
= e20u

2 + e11uv + e20v
2 + P6(u, v),

dv

dτ
= v + f20u

2 + f11uv + f02v
2 +Q6(u, v). (3.7)

where P6(u, v) and Q6(u, v) are power series at least of the third order in (u, v),
and

e20 =
c20

a10 + b10
, e11 =

c11
a10 + b10

, e02 =
c02

a10 + b10
,

f20 =
d20

a10 + b10
, f11 =

d11
a10 + b10

, f02 =
d02

a10 + b10
.

By some computation, the coefficient of u2 of system (3.7) is

e20 =
(1 +

√
k)β

(β
√
k − (1 + 2

√
k))2

̸= 0.

Applying Theorem 7.1 in Chapter 2 in [18], am = e20 ̸= 0,m = 2. So E1 is a saddle-
node with a parabolic sector. Considering the time variable τ , if a10 + b10 > 0, i.
e. β > 2 + 1√

k
, then the equilibrium E1 is a saddle-node with a repelling parabolic

sector; if a10 + b10 < 0, i.e. β < 2 + 1√
k
, then the equilibrium E1 is a saddle-node

with an attracting parabolic sector. This proves (b) and (c).
Now the stability of E2 and E3 in system (1.2) is stated as follows.

Theorem 3.3. Suppose α > 1+ 2
√
k. There are two positive equilibria E2 and E3

in system (1.2). E3 is always a saddle point and E2 is

(i) a source if β > u2(u2+v2)
k ;

(ii) a sink if 0 < β < u2(u2+v2)
k ;

(iii) a center or fine focus if β = u2(u2+v2)
k .

Proof. The Jacobian matrix of system (1.2) at E2 is

JE2
=

 βk
u2+k

βu2

v2

−1− k
u2+k −u2+v2

v2

 .
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After calculation,

detJE2
=

βv2(u
2
2 − k)

u2v22

=
β
√
∆

2u2v2
(
√
∆+ (α− 1))

trJE2 =
βk − u2

2 − u2v2
u2v2

,

where ∆ = (1−α)2−4k. From the value range of α, it can be seen that detJE2
> 0.

We consider the sign of trJE2
. If trJE2

> 0 ie. β > u2(u2+v2)
k , E2 is a source; if

trJE2
< 0, i.e., β < u2(u2+v2)

k , E2 is a sink; if trJE2
= 0, i.e., β = u2(u2+v2)

k , E2 is a
center or fine focus.

The Jacobian matrix of system (1.2) at E3 is

JE3
=

 βk
u3+k

βu3

v3

−1− k
u3+k −u2+v3

v3

 .

Then

detJE3 =
βv3(u

2
3 − k)

u3v23

=
β
√
∆

2u3v3
(
√

(1− α)2 − 4k − (α− 1))

< 0.

Hence, E3 is always a saddle point.

4. Bifurcation

In view of the stability properties of equilibrium points of system (1.2) in Section
3, now we will discuss the bifurcations at points caused by their instability.

4.1. Saddle-node bifurcation

From Theorem2.1 in Section 2, the number of positive equilibria of system (1.2)
changes with the value of α. When 0 < α < 1+2

√
k, there is no positive equilibrium;

when α=1+2
√
k, there is only one positive equilibrium; When α > 1 + 2

√
k, there

are two different positive equilibria. Hence, when α = αSN = 1 + 2
√
k, the saddle-

node bifurcation may occur at positive equilibrium E1. In the following we present
the related results.

Theorem 4.1. When α=αSN , system (1.2) undergoes the saddle-node Bifurca-
tion at positive equilibrium E1, where the threshold of saddle-node bifurcation is
α=αSN=1+2

√
k.

Proof. Applying Sotomayor’s theorem in [17], the transversality conditions for
the saddle-node bifurcation at positive equilibrium E1 could be verified. In the
proof of Theorem 3.2, when α=1+2

√
k, β ̸= 2 + 1√

k
, the determinant of Jacobian
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matrix of system (1.2) at E1 is detJE1
= 0 and the trace of Jacobian matrix of

system (1.2) at E1 is trJE1 = β
√
k−1−2

√
k

1+
√
k

. So JE1 has a zero eigenvalue, denoted

by λ1. Let V and W represent eigenvectors of matrices JE1
and JT

E1
corresponding

to eigenvalues λ1 = 0, respectively, where

V =

V1

V2

 =

 1

0

 ,

W =

W1

W2

 =

 1 + 2
√
k

β
√
k

 .

Then,

Fα(E1, αSN ) =

0

1

 ,

D2F (E1, αSN )(V, V ) =

 ∂F1

∂x2 V
2
1 + 2 ∂F1

∂x∂yV1V2 +
∂F1

∂y2 V
2
2

∂F2

∂x2 V
2
1 + 2 ∂F2

∂x∂yV1V2 +
∂F2

∂y2 V
2
2


=

 2β
√
k

(1+
√
k)2

− 2
√
k

(1+
√
k)2

 ,

then it is concluded that

WTFα(E1, αSN ) = β
√
k ̸= 0,

WT [D2F ( E1, αSN )(V, V )] = (
2β

√
k

1 +
√
k
) ̸= 0,

which means eigenvectors V and W satisfy the conditions for the saddle-node bifur-
cation in Sotomayor’s theorem. As a result, system (1.2) undergoes the saddle-node
bifurcation at α = αSN = 1 + 2

√
k.

4.2. Hopf bifurcation

From Section 3, we know that E3 is always a saddle, and the stability of positive
equilibrium E2 varies with the value of β, which means that the Hopf bifurcation
may occur at E2.

Theorem 4.2. Suppose α > 1 + 2
√
k and β = βH = u2(u2+v2)

k . System (1.2)
experiences the Hopf bifurcation at the positive equilibrium E2, where the threshold

of Hopf bifurcation is β = βH = u2(u2+v2)
k .

Proof. From Theorem 3.3, the Jacobian matrix of system (1.2) at E2 is

JE2
=

 βk
u2+k

βu2

v2

−1− k
u2+k −u2+v2

v2

 =

 βk
u2v2

βu2

v2

−1− k
u2+k −u2+v2

v2

 .
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Furthermore,

detJE2
=

β(u2
2 − k)

u2v2
> 0,

trJE2
=

βk − u2
2 − u2v2

u2v2
. (4.1)

For JE2
, the characteristic equation is

(λ− βk

u2v2
)(λ+

u2 + v2
v2

) +
βu2

v2
(1 +

k

u2 + k
) = 0.

For simplification it is

λ2 − βk − u2
2 − u2v2

u2v2
λ+

βv2(u
2
2 − k)

u2v22
= 0,

which means

λ2 − trJE2
λ+ detJE2

= 0. (4.2)

From equation (4.2), the eigenvalue of JE2 is

λ1,2 =
tr(JE2

)±
√
tr(JE2

)2 − 4det(JE2
)

2
.

Since β = βH = u2(u2+v2)
k , trJE2

=
βk−u2

2−u2v2
u2v2

= 0, tr(JE2
)2 − 4det(JE2

) =

−4det(JE2
) < 0, then λ1,2=±

√
det(J1,2)i. The characteristic roots of JE2

are a

pair of pure imaginary ones. Moreover, when β=u2(u2+v2)
k ,

dReλ1,2

dβ
=

k

α− 1 +
√
(1− α)2 − 4k + 2k

̸= 0.

So the conditions for the Hopf bifurcation hold immediately. Then the Hopf bi-

furcation occurs in system (1.2) at the positive equilibrium E2 when β = u2(u2+v2)
k .

Next we determine the direction of Hopf bifurcation of system (1.2) at E2 in
terms of the first Lyapunov coefficient.

Translating E2(u2, v2) to O(0, 0) with (x̂, ŷ) = (u− u2, v − v2), we have

˙̂x = â10x̂+ â01ŷ + â20x̂2 + â11x̂ŷ + â30x̂3 + â21x̂2ŷ + P1(x̂, ŷ),

˙̂y = b̂10x̂+ b̂01ŷ + b̂20x̂2 + b̂11x̂ŷ + b̂30x̂3 + b̂21x̂2ŷ +Q1(x̂, ŷ), (4.3)

where P̂1(x, y) and Q̂1(x, y) are power series at least of order four in (x̂, ŷ), and

â10 =
βk

u2 + k
, â01 =

βu2

v2
, â20 =

βk2v2
(u2 + k)3

, â11 =
βu2

u2 + k
(1 +

k

u2 + k
),

â30 = − βk2v2
(u2 + k)4

, â21 =
βk2

(u2 + k)3
, ˆb10 = −1− k

u2 + k
, ˆb01 = −1− u2

v2
,

ˆb20 = − k2v2
(u2 + k)3

, ˆb11 = −u2(u2 + 2k)

(u2 + k)2
, ˆb30 =

k2v2
(u2 + k)4

, ˆb21 = − k2

(u2 + k)3
.



722 R. Wu & X. Qin

Then we make the transformation û = −x̂, v̂ = â10x̂+â01ŷ√
D

, where D = â10b̂01 −
â01b̂10, and system (4.3) becomes

˙̂u = −
√
Dv̂ + ĉ20û2 + ĉ11ûv̂ + ĉ30û3 + ĉ21û2v̂ + P2(û, v̂),

˙̂v =
√
Dû+ d̂20û2 + d̂11ûv̂ + d̂30û3 + d̂21û2v̂ +Q2(û, v̂), (4.4)

where P̂2(u, v) and Q̂2(u, v) are power series at least of order four in (û, v̂), and

ĉ20 =
βk

(u2 + k)u2
, ĉ11 =

√
D(u2 + 2k)

(u2 + k)u2
, ĉ30 = − βk2v2

(u2 + k)3u2
, ĉ21 = −

√
Dk2v2

(u2 + k)3u2
,

d̂20 = − βkv2√
D(u2 + k)2

, d̂11 = − (u2 + 2k)v2
(u2 + k)2

, d̂30 =
βk2v2√

D(u2 + k)3u2

, d̂21 =
k2v22

(u2 + k)4
.

Let

f(û, v̂) ≜ ĉ20û2 + ĉ11ûv̂ + ĉ30û3 + ĉ21û2v̂ + P2(û, v̂),

g(û, v̂) ≜ d̂20û2 + d̂11ûv̂ + d̂30û3 + d̂21û2v̂ +Q2(û, v̂).

Applying the formula of the first Lyapunov coefficient [16], σ1 is

σ1 =
1

16
(fûûû + gûûv̂ + fûv̂v̂ + gv̂v̂v̂) +

1

16
√
D
(fûv̂(fûû + fv̂v̂)

− gûv̂(gûûgv̂v̂)− fûûgûû + fv̂v̂gv̂v̂)

=
1

16
(6ĉ30 + 2d̂21) +

1

16
√
D
(2ĉ11ĉ20 − 2d̂11d̂20 − 4ĉ20d̂20)

=
1

16
(

−6βk2v2
(u2 + k)3u2

+
2k2v22

(u2 + k)4
) +

1

16
√
D
(
2
√
D(u2 + 2k)

(u2 + k)u2

βk

(u2 + k)u2

− 2(u2 + 2k)v2
(u2 + k)2

βkv2√
D(u2 + k)2

+ 4
βk

(u2 + k)u2

βkv2√
D(u2 + k)2

)

Hence, if σ1 < 0, system (1.2) undergoes the supercritical Hopf bifurcation
with a stable limit cycle; if σ1 > 0, system (1.2) undergoes the subcritical Hopf
bifurcation with an unstable limit cycle.

4.3. Bogdanov-Takens bifurcation

Next we will focus on the Bogdanov-Takens bifurcation. From Theorem 3.2 in
Section 3, when α = 1+2

√
k, β = 2+ 1√

k
, the positive equilibrium E1 is a degenerate

cusp of codimension 2 for system (1.2). Then system (1.2) may admit the Bogdanov-
Takens bifurcation at positive equilibrium E1. From the above discussions, choose α
and β as the bifurcation parameters to investigate the Bogdanov-Takens bifurcation
at the positive equilibrium E1.

Theorem 4.3. Let αBT = 1 + 2
√
k, βBT = 2 + 1√

k
. If (α, β) changes in some

neighborhood of (αBT , βBT ), the Bogdanov-Takens bifurcation will occur in system
(1.2) at the positive equilibrium E1.
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Proof. Let (α, β)=(αBT + ε1, βBT + ε2), where ε = (ε1, ε2) varies slightly near
the origin, and system (1.2) becomes

u̇ = (β + ε2)u(
uv

u+ k
− 1),

v̇ = (α+ ε1)− v − u2v

u+ k
. (4.5)

After translating E1 to the origin by the transformation (x, y) = (u−u1, v−v1),
system (4.5) is changed into

ẋ = p00 + p10x+ p01y + p20x
2 + p11xy + P7(x, y),

ẏ = q00 + q10x+ q01y + q20x
2 + q11xy +Q7(x, y), (4.6)

where P7(x, y) and Q7(x, y) are C∞ functions whose coefficients smoothly depend
on ε1 and ε2 and are not less than the third order in (x, y), and

p00 = 0, p10 =
(βBT + ε2)k

u1 + k
, p01 =

(βBT + ε2)u1

v1
, p20 =

(βBT + ε2)k
2v1

(u1 + k)3
,

p11 =
(βBT + ε2)u1

u1 + k
(1 +

k

u1 + k
), q00 = ε1, q10 = −u1 + 2k

u1 + k
, q01 = −αBT

v1
,

q20 = − k2v1
(u1 + k)3

, q11 = −u1(u1 + 2k)

(u1 + k)2
.

Further making the following changes into system (4.6),

u = x,

v = p10x+ p01y + p20x
2 + p11xy +Q7(x, y), (4.7)

system (4.6) is reformulated as

u̇ = v,

v̇ = r00 + r10u+ r01v + r20u
2 + r11uv + r02v

2 +Q8(u, v), (4.8)

where Q8(u, v) is a C∞ function whose coefficients smoothly depend on ε1 and ε2
and is not less than the third order in (u, v), and

r00 = p01q00, r10 = p01q10 + p11q00 − p10q01, r01 = p10 + q01,

r20 = q01(
p10p11
p01

) + p01q20 − p10q11 + p11q10 −
p11p10q01

p01
,

r11 = 2p20 −
p11q01
p01

+ q11 +
p11q01
p01

− p11p10
p01

, r02 =
p11
p01

.

Next, the new time variable τ is introduced through dt = (1− r02u)dτ , and still
denoting τ as t, then system (4.8) has the following form:

u̇ = (1− r02u)v,

v̇ = (1− r02u)(r00 + r10u+ r01v + r20u
2 + r11uv + r02v

2 +Q8(u, v)). (4.9)

Let

(x, y) = (u, 1− r02u)v.
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Then system (4.9) becomes

ẋ = y,

ẏ = d1 + d2x+ d3y + d4x
2 + d5xy +Q9(x, y), (4.10)

where Q9(x, y) is a C∞ function whose coefficients smoothly depend on ε1 and ε2
and is not less than the third order in (x, y), and

d1 = r00, d2 = r10 − 2r02r00, d3 = r01, d4 = r20 − 2r02r10 + r02
2r00,

d5 = r11 − r01r02.

Note that di(i = 1, 2, 3, 4, 5) are functions about ε1 and ε2. When ε1 = ε2 = 0, it
holds that

d4 = − βBT

1 +
√
k
< 0,

d5 = −βBT + 1 + 2
√
k

(1 +
√
k)2

< 0. (4.11)

Next, applying the transformation (u, v) = (x, y√
−d4

), and introducing a new

variable by τ =
√
−d4t, still denoting τ as t, system (4.10) is written as

u̇ = v,

v̇ = e1 + e2u+ e3v − u2 + e4uv +Q10(u, v), (4.12)

where Q10(u, v) is a C∞ function whose coefficients smoothly depends on ε1 and ε2
and is not less than third order in (u, v), and

e1 = −d1
d4

, e2 = −d2
d4

, e3 =
d3√
−d4

, e4 =
d5√
−d4

.

From the transformation (x, y) = (u− e2
2 , v), system (4.12) is transformed into

ẋ = y,

ẏ = f1 + f2y − x2 + f3xy +Q11(x, y), (4.13)

where Q11(x, y) is a C∞ function whose coefficients smoothly depend on ε1 and ε2
and is not less than the third order in (x, y), and

f1 = e1 +
e2

2

4
, f2 = e3 +

e2e4
2

, f3 = e4.

From equation (4.11), note that f3 = e4 = d5√
−d4

< 0. Finally, applying (u, v) =

(−f3
2x, f3

3y), τ = − 1
f3
t, when τ is still denoted by t, we have

u̇ = v,

v̇ = g1 + g2v + u2 + uv +Q12(u, v), (4.14)

where Q12(u, v) is a C∞ function whose coefficients smoothly depend on ε1 and ε2
and is not less than the third order in (u, v), and

g1 = −f1f3
4, g2 = −f2f3.
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After calculation,

g1 =
β2

√
k

(1 +
√
k)2

ε1 +
11β2(1 + 2

√
k)2

4(1 +
√
k)4

ε21 −
6β

√
k

(1 +
√
k)2

ε1ε2 + o(ε2),

g2 = −β(1 + 2
√
k)

2(1 +
√
k)2

ε1 +

√
k

1 +
√
k
ε2 +

β(1 + 2
√
k)3√

k(1 +
√
k)4

ε21 −
(1 + 2

√
k)(5 + 7

√
k)

2(1 +
√
k)3

ε1ε2

+

√
k

β(1 +
√
k)

ε22 + o(ε2), (4.15)

∣∣∣∣∂(g1g2)∂(ε1ε2)

∣∣∣∣
ε1=ε2=0

= − (1 + 2
√
k)2

(1 +
√
k)3

̸= 0. (4.16)

Obviously, g1 and g2 are independent parameters. From (4.16), parameter trans-
formation (4.15) is a homeomorphism in a small neighborhood of the origin. Since
the coefficient of time transformation τ = − 1

f3
t, from equation (4.11), we know

− 1
f3

= − 1
e4

= −
√
−d4

d5
> 0. Hence, there is the subcritical Bogdanov-Takens bi-

furcation in system (1.2). From [19], system (4.14) is the universal unfolding of
the Bogdanov-Takens bifurcation of codimension 2. Then local expressions for the
bifurcation curves are given as follows.

(i) Saddle-node bifurcation curve SN = {(ε1, ε2) : g1(ε1, ε2) = 0, g2(ε1, ε2) ̸= 0};
(ii) Hopf bifurcation curve H = {(ε1, ε2) : g2(ε1, ε2) =

√
−g1(ε1, ε2), g1(ε1, ε2) <

0};
(iii) homoclinic bifurcation curve HL = {(ε1, ε2) : g2(ε1, ε2) = 5

7

√
−g1(ε1, ε2),

g1(ε1, ε2) < 0}.

5. Numerical simulation

In the above sections, theoretical analysis about the existence of equilibria in sys-
tem (1.2), their stability and bifurcations is presented. In order to validate the
effectiveness of analysis, we will carry out some numerical simulation.

Example 5.1. Parameters k and β are fixed, α is varying. Now take k = 0.09, β =
5.33333.

From Fig. 1, we could find the equilibrium points and their stability in system
(1.2) with different values of parameter α. System (1.2) has a boundary equilibrium
E0 = (0, α) which is a stable node. When α = 1.4 < 1 + 2

√
k, system (1.2) has no

positive equilibrium, as shown in Fig. 1(a); when α = 1 + 2
√
k = 1.6, system (1.2)

has one positive equilibrium E1 = (
√
k, 1 +

√
k) = (0.3, 1.3) where the saddle-node

bifurcation may occur, as shown in Fig. 1(b); when α = 1.65 > 1 + 2
√
k, system

(1.2) has two positive equilibria E2 = (0.45, 1.0667) and E3 = (0.2, 1.5), where E2

is a stable focus and E3 is a saddle, as shown in Fig. 1(c).

Example 5.2. In this example, we can find the saddle-node bifurcation with vary-
ing β and fixed k and α. The parameter is taken to be k = 0.16, α = 1.8.
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Figure 1. Phase portraits of (1.2). (a) α = 1.4; (b) α = 1.6; (c) α = 1.65.

System (1.2) has a boundary equilibrium E0 = (0, α), which is a stable node.
When α = 1 + 2

√
k = 1.8, system (1.2) has a positive equilibrium E1 = (

√
k, 1 +√

k) = (0.4, 1.4). When β = βBT = 4.5, E1 is a cusp of codimension two and
system (1.2) may undergo the Bogdanov-Takens bifurcation near E1, as shown in
Fig. 2(b); when β = 3 < βBT , positive equilibrium E1 is a saddle-node with an
attracting parabolic sector, as shown in Fig. 2(a); when β = 5.5 > βBT , positive
equilibrium E1 is a saddle-node with a repelling parabolic sector, as shown in Fig.
2(c).
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Figure 2. Phase portraits of (1.2). (a) β = 3; (b) β = 4.5; (c) β = 5.5.

Example 5.3. Here the Hopf bifurcation will be illustrated. The parameter is
taken to be k = 0.16, α = 2.

With the fixed parameters k and α and varying β, system (1.2) has a boundary
equilibrium E0 = (0, α) which is a stable node. Now α = 2 > 1 + 2

√
k, there are

two positive equilibrium points E2 = (0.8, 1.2) and E3 = (0.2, 1.8), where E3 is
always a saddle. When β = βH = 10, E2 is a fine focus, as shown in Fig. 3(b);
when β = 10.6006 > βH , E2 is an unstable focus as shown in Fig. 3(a); when
β = 9.9 < βH , E2 is a stable focus, as shown in Fig. 3(c); when β crosses from the
right side of βH to the left, the stability of the equilibrium point E2 is changed and
the Hopf bifurcation occurs near E2, with a periodic orbit appearing, as shown in
Fig. 3(d).
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Figure 3. Phase portraits of (1.2).(a) β = 10.6006; (b) β = 10; (c) β = 9.9; (d)β = 9.9.

Example 5.4. The Bogdanov-Takens bifurcation will be illustrated in this exam-
ple. According to the above discussions, when parameter k = 0.16, α = 1.8, β = 4.5,
the Bogdanov-Takens bifurcation will occur at E1. Choosing α and β as bifurcation
parameters, their thresholds are α = 1.8, β = 4.5. By calculation,

g1 = −4.1327ε1 + 46.9668ε21 − 5.5102ε1ε2,

g2 = −17.0788ε21 + 0.1968ε1ε2 + 2.0663ε1 + 0.0635ε22 + 0.2857ε2, (5.1)

∣∣∣∣∂(g1g2)∂(ε1ε2)

∣∣∣∣
ε1=ε2=0

= − (1 + 2
√
k)2

(1 +
√
k)3

= −1.18076 ̸= 0. (5.2)

Hence, parameter transformation (5.1) is a homeomorphism in a small neighborhood
of the origin. Meanwhile, when ε1 and ε2 is small enough, we have

d3 = −13.2835ε1 − 0.7143ε2 − 2.9519ε1ε2 − 3.2143 < 0,

d4 = −1.4286ε2 − 3.2143 < 0,

and the local representation of the second order approximation of the bifurcation
curve is as follows:

(i) The saddle-node bifurcation curve SN = {(ε1, ε2) : ε1 = 0, ε2 ̸= 0};
(ii) the Hopf bifurcation curve H = {(ε1, ε2) : 51.2365ε21−4.3294ε1ε2−4.1327ε1+

0.0816ε22 = 0, ε1 > 0};
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(iii) the homoclinic bifurcation curve HL = {(ε1, ε2) : 28.2323ε21 − 1.6306ε1ε2 −
2.1085ε1 + 0.0816ε22 = 0, ε1 > 0}.

According to the local representations of the bifurcation curves, the bifurcation
diagram and phase diagram of system (4.5) can be obtained from the values of ε1
and ε2 in the small neighborhood of the origin. As shown in Fig. 4(a), the two-
dimensional plane (ε1, ε2) is divided into four parts by bifurcation curves. With
(0, 0) as the center, the bifurcation diagram is described in clockwise rotation and
the corresponding dynamical behaviors of system (4.5) can be found.

(i) When (ε1,ε2)=(0,0), system (4.5) has a boundary equilibrium and a unique
positive equilibrium where the positive equilibrium point is the cusp of codi-
mension 2 ( as shown in Figure. 2(b)).

(ii) When (ε1,ε2) is located in region I, system (4.5) has a boundary equilibrium
and no positive equilibrium ( as shown in Figure. 4(b)).

(iii) When (ε1,ε2) is on SN curve, system (4.5) has a boundary equilibrium and
one positive equilibrium where the positive equilibrium point is a saddle.

(iv) When (ε1,ε2) crosses the SN curve and reaches region II, system (4.5) has a
boundary equilibrium and two positive equilibria where one is a saddle and the
other equilibrium point of the two is an unstable focus ( as shown in Figure.
4(c)).

(v) When (ε1,ε2) is on H curve, system (4.5) has a boundary equilibrium and two
positive equilibria where one is a saddle and the other equilibrium point of the
two is an unstable weak focus.

(vi) When (ε1,ε2) crosses the H curve and reaches region III, system (4.5) under-
goes the subcritical Hopf bifurcation, where an unstable limit cycle appears.
There are two positive equilibria for system (4.5), where one is the saddle and
the other is a stable focus ( as shown in Figure. 4(d)).

(vii) When (ε1,ε2) is on HL cruve, an unstable homoclinic orbit will appear. There
are two positive equilibria for system (4.5), where one is saddle and the other
is a stable focus (as shown in Figure. 4(e)).

(viii) When (ε1,ε2) crosses the HL curve and reaches region IV , the homoclinic
orbit is broken. There are two positive equilibria for system (4.5), where one
is saddle and the other is a stable focus ( as shown in Figure. 4(f)).

6. Conclusion

By employing the stability analysis and bifurcation theory, stability of equilib-
rium points and their bifurcation results about the nutrient-microorganism model
are obtained, such as the saddle-node bifurcation, the Hopf bifurcation and the
Bogdanov-Takens bifurcation, and the induced dynamics are also found, such as
the appearance and disappearance of equilibrium points, periodic orbits, and ho-
moclinic orbits. These complex behaviors are interesting parts of the dynamics in
the model, and few results in this area are found to be reported. From the obtained
results, we can have some more insights into the interaction between the nutrient
and the microorganism. In the presence of stable positive equilibrium points, the
nutrients and the microorganism can keep the stable coexistence state for a long
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Figure 4. (a)Subcritical Bogdanov-Takens bifurcation diagram; (b)(ε1,ε2)=(-0.002, 0.2) is located
in region I, system(4.5) has no positive equilibrium; (c)(ε1,ε2)=(0.002, 0.4) is located in region II,
system(4.5) has an unstable focus; (d)(ε1,ε2)=(0.002, 0.29) is located in region III, system(4.5) has
an unstable limit cycle; (e)(ε1,ε2)=(0.002, 0.2450828170) is located at curve HL, system(4.5) has an
unstable homoclinic orbit; (f)(ε1,ε2)=(0.002, 0.00102) is located region IV , system(4.5) has a stable
focus.
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time. In the case of stable boundary points or unstable states, one of them will go
extinct, the coexistence could not be kept, which is usually undesirable. In light of
the theoretical and numerical analysis, we can get the designated interaction states
by adapting the system parameters. In this model, we assume that the part of
bacteria is dormant, and the activation mechanism of bacteria is not well repre-
sented. For nutrient-microorganism models, further exploration can be conducted
to investigate whether different activation mechanisms can induce more complex
dynamical behaviors.
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