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Bifurcation of Limit Cycles of a Perturbed
Pendulum Equation®

Jihua Yangh'

Abstract This paper investigates the limit cycle bifurcation problem of the
pendulum equation on the cylinder of the form & = y,y = — sinx under per-
turbations of polynomials of sinz, cosz and y of degree n with a switching
line y = 0. We first prove that the corresponding first order Melnikov func-
tions can be expressed as combinations of anti-trigonometric functions and the
complete elliptic functions of first and second kind with polynomial coefficients
in both the oscillatory and rotary regions for arbitrary n. We also verify the
independence of coefficients of these polynomials. Then, the lower bounds for
the number of limit cycles are obtained using their asymptotic expansions with
n=1,2,3.
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1. Introduction and main results

Consider the following non-smooth near-integrable differential equation

pH(z,y) +eff(z,y) >0
qt(@,y) +egt(zy) ) 777

y p(z,y) +ef~(,y)
(q‘(wyy) +Eg‘(w7y)> st

where £ > 0 is a small parameter, and p*(z,v), ¢*(z,), f*(x,y) and g*(x,y) are
C* smooth functions. When ¢ = 0, system (1.1) is a non-smooth integrable differ-
ential equation and has a family of piecewise smooth closed orbits to form a general-
ized annulus (for short, period annulus). In recent years, the limit cycle bifurcation
problems of system (1.1) have received considerable attention from mathematical
scholars, and some important results have been obtained, when p*(x,%), ¢*(x,y),
f*(x,y) and g*(x,y) are polynomials of = and y. See [3,4,7,11-14,18-21,23, 24]
and the references therein. For example, the authors in [7,14] established a formu-
la for the first order Melnikov function (called Melnikov function method), which
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plays a key role in studying the number of limit cycles of system (1.1). The authors
in [4,12,13] developed the averaging method to non-smooth differential systems.
Then the authors in [6,10] showed the equivalence of these two methods. The au-
thors in [20] studied the limit cycle problems of two kinds of quadratic reversible
systems with non-smooth polynomial perturbation by using Picard-Fuchs equation.

But when p*(z,y), ¢*(x,y), f¥(z,y) and g*(x,y) are not polynomials of z and
y, such as trigonometric functions or trigonometric polynomials, there are a few
results. For instance, the authors in [2] considered a pendulum-like equation of the
form

m
Z+sinz =¢ Z Qn,s(2)E*,
s=0
where @, s(z) are trigonometric polynomials of degree n, and got the upper bounds
on the number of zeros of its associated first order Melnikov functions, in both the
oscillatory and rotary regions. Another interesting perturbed whirling pendulum is
the equation

&=y, y=sinz(cosx —r) + ey(cosz + a), (1.2)

where a and r > 0 are real parameters, and € > 0 is a small parameter, which was
considered in [9]. The authors proved that, depending on the value of the parameter,
the period function of system (1.2) is either monotone or has exactly one critical
point using Picard-Fuchs equation method. By using the averaging method of first
order, the authors in [1] obtained the exact number of limit cycles of the equation

i=-y, y=a+e(l+cos™(0)Q(x,y),

where £ > 0 is a small parameter, § = arctan(y/z) and Q(z,y) is a polynomial of
degree n. The non-smooth form of the above equation is

2
#=—y, g =a+e(l+cos™(0) D xs,(2,9)Qu(x,y),
k=1

where xg is the characteristic function of a set S, Qx(x,y) is a polynomial of degree
n, and S1 = {(z,y) : y > 0} and Sy = {(x,y) : y < 0}, considered by [16]. The
authors got the exact number of limit cycles of this differential equation by using
the averaging method of first order. Recently, the authors in [17] established some
general methods on the existence of limit cycles bifurcating from closed orbits of
a near-Hamiltonian system on the cylinder by the Melnikov function method and
derived the expansions of the first order Melnikov function, which were used to
consider the bifurcation problem of limit cycles near a double homoclinic loop.

In the current work, we will give the lower bounds of the number of limit cycles
of the single pendulum

L=y, y=—sinz (1.3)

under perturbation of polynomials of sin x, cos x and y of degree n with the switching
line y = 0. The pendulum equation (1.3) is a Hamiltonian system with total energy

1
H(z,y) = §y2 —cosz+ 1, (1.4)
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Fig. 1. The phase portrait of system (1.3).

)

which in fact can be considered on the cylinder [—m, 7] x R. It is easy to get
that system (1.3) has equilibria (jm,0). (2jm,0) are stable equilibria—centers, and
((2§ + 1)7,0) are unstable equilibria—saddle points, j = 0,41, £2,---. See Fig. 1.

Since sin z is a periodic function with the period 27, the physical state of system
(1.3) described by points (2km + z,y) is the same for k € Z. If these points are
considered as a single point, we obtain the phase cylinder as follows

P = {(m,y)|x € [_7777T]7y € IR}

In fact, it is formed by cutting the Euclidean plane along z = +7 and then bonding it
at the cutting. There are two types of simple closed curves on the phase cylinder P.
One type divides P into two regions, one of which is a bounded domain. These closed
curves are homotopic to zero, i.e. the closed orbit can be deformed continuously
to a point. The corresponding closed orbit is called a periodic orbit of type I. The
other type divides P into two unbounded regions, and these closed curves cannot
be homotopic to zero. The corresponding closed orbit is called a periodic orbit of
type II.

Thus, for h € (0,2), the levels {(z,y) : H(z,y) = h} are of type I, while the
corresponding levels are of type II for h € (2,+00), and they wind around the
cylinder. See Fig.2. The region corresponding the energies h € (0,2) is usually
called oscillatory region, and the regions with energies h € (2,400) and +y > 0 are
called rotary region.

It is well known that any real polynomial of sinz, cosx and y of degree n can
be written as

n n—1
E a; ;y’ cos" x + E b; jy’ cos' xsinx, i,5 € N,
i+5=0 i+5=0

where a; j,b; ; € R. Thus, the perturbed pendulum equation with a switching line
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Fig. 2. The phase cylinder of system (1.3).

y = 0 can be written as

( y+eft(z,y) ) >0

—sinz + &g (z,y)

Y < y+ef(x,y) ) ) <0

—sinz +eg9~ (z,y)

where € > 0 is a small parameter,

n n—1
[ (z,y) = E aijj cos' T + g b;‘ijj cos’ Tsinz,
i+j=0 i+5=0

n n—1
gz, y) = Z cijj cos' x + Z di[jyj cos' zsinz, i,j € N,
i+j=0 i+5=0
and afj, bfj,cfj, dii,j € R. By the main results in [7,14], one knows that the first
order Melnikov functions corresponding to three families of periodic orbits of system

(1.5) are as follows

Mo(h) = /F g* (2 y)dx — £ (z,y)dy

o (1.6)

+ [ g e~ £ @y, he 0.2),
My (h) = /F+ 9" (z,y)dz — fF(z,y)dy, h € (2,+00), (1.7)
M) = [ g7 (@g)do— £y, b e (2, 00), (1.9)

Iy
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where
Lo ={H(@,y) = h,h € (0,2),y > 0},

Ty o =1{H(z,y) = h,h€(0,2),y <0},

U) = {H(z,y) = h,h € (2,400),y > 0},

I'y ={H(z,y) = h,h € (2,4+00),y < 0}.
There is a beautiful relationship between the limit cycles and the zeros of the first
order Melnikov function by the mains results in [7,8,14,17]: the total number
of zeros of the first non-vanishing Melnikov functions (1.6)-(1.8) can control the
number of limit cycles bifurcating from the period annuli of system (1.5). In [22],
the authors got the upper bounds of the number of limit cycles of system (1.5) using
Picard-Fuchs equation. In this article, we first obtain the algebraic structure of the
first order Melnikov functions (1.6)-(1.8). Then, the lower bounds for the number of

limit cycles of system (1.5) are obtained, by applying their asymptotic expansions
with n = 1,2,3. Our main results are the following two theorems.

Theorem 1.1. Forn € N and n > 4, the following statements hold:
(i) If h € (0,2), then

aihi) arccos(1 — h) + <”z_:1 bihi) V2h — h?
i=0

=0 . ! (1.9)
+ (Y e ) K(VA2) + (Y di ) E(/h]2),
i=0 i=0
where a; (i = 0,1,---,[8]), by (i = 0,1,---,n—1), ¢; (1 = 1,2,---,n —2) and

d; (i=0,1,--- ,n—1) can be chosen arbitrarily, and K(-) and E(-) are the complete
elliptic integrals of first and second kind and defined by (2.11).

(i) If h € (2,400), then

3]

Ma(h) = afnt+ (VR bER) K(V2/R) + (VRS ch ) E(y/2/R), (1:10)
i=0 i=0 i=0
wherea;'E (i=0,1,---,[5]), bii (i=1,---,n—2) cmdcii (t=0,1,--- ,n—1) can
be chosen arbitrarily.
5ot o
d-ij in the perturbed pendulum equation (1.5), My(h) can have at least 9 zeros if

Theorem 1.2. By properly choosing the perturbation coefficients a and

n=3; 6 zeros if n = 2; 8 zeros if n = 1, when h € (0,2); and My (h) can have at
least 6 zeros if n = 3; 4 zeros if n = 2; 2 zero if n = 1, when h € (2,4+00). The
same result holds for M_(h).

Remark 1.1. By Theorem 2.1 in [17], the total number of zeros of My(h) and
M (h) provide an upper bound for the number of limit cycles of system (1.5)
bifurcating from the corresponding period annulus, and the existence of multiple
simple zeros provides a lower bound for the number of limit cycles.

This paper is organized as follows. In Section 2, we obtain the detailed expres-
sions of the first order Melnikov functions and verify the independence of coefficients
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of the coefficient polynomials of several generated integrals by using mathematical
induction. Section 3 is devoted to studying the lower bounds for the number of
limit cycles of system (1.5) for n = 1,2, 3.

2. The algebraic structure of the first order Mel-
nikov function

In order to estimate the number of zeros of the first order Melnikov functions M(h)
and My (h), one should study the algebraic structure of M(h). To this end, we
denote

Li; () :/ y’ cos' adz, h € (0,2),
F+

Jii(h) :/ v’ cos’ xdx, h € (2,400).
rr

The next lemma shows that My(h) and My (h) can be expressed as a combination
of several curvilinear integrals with polynomial coefficients and some coefficients of
these polynomials can be taken as free parameters.

Lemma 2.1. Forn € N and n > 4. Then the following statements hold:
(i) Let h € (0,2). Then

(5]

Mo(h):( aih' ) Io,o(h) (Zﬁth)Im
(Z% Voa(h) + (Zéihi)llyl(h)

where o, Bi, i and 6; are constants and o (i = 0,1,---,[5]), B; (i =0,1,--- ,n—

)

1),v (i=0,1,---,n—3) and §; (i=0,1,--- ,n— 1) can be chosen arbitrarily.
(i) Let h € (2,+00). Then

]
M (h) =( Y- aifh*) Jooh) (Zﬂihz)zho

+ (vafh’) Jo1(h) + (Z 5zihz) Ji1(h)

N3

i

o
—
o
[\
~

where 0‘1 . BE, vF and 6F are constants and of (i = 0,1,---,[2]), BF (i =
0,1,---,n 71),%# (i=0,1,---,n—3) cmdc?ijE (i=0,1,---,n—1) can be chosen
arbitmrily.

Proof. We only prove item (i) for My(h). The proofs of My (h) in (ii) follow in
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the same way. An easy calculation gives that

y? cos' xsinxdx = y? cos' zdy = 0,
rF rF
h,0

h,0

/7 y’ cos' wdr = (—1)7T1 I, ;(h), (2.3)

/ v cos’ xsinxdy = (—1) / ) cos® zsin zdy.
_ ot

h,0

Using the Green’s Formula, one has that

/  cost st ad rlicigei(h) = H L (h), i 21,5 >0, (2.4)
cos' x sin xdy = ; , :
T, Y Y7 - Bl (h), i=0,j2>0,
and
/ W cos' sin wdy = (_1)% (J’%lh*lvi“(h) - ;-%L‘Jrl,wl(h)) i>1,j>0 25)
Ty (=17 S L i (), i=0,5>0,

and in (2.5) we have used that the second equality of (2.3). From (2.3), (2.4) and
(2.5) it follows that

Mo(h) = Y leiy — (1) ¢ ;i (h)

it+5=0
_ S + _1VpT. I _ i L
2 s [ fimran () = g i ()]
n n+1 . )
= Z [Cij - (-1 ) G, + Z b;_ 1,; 1 (_1)75;1,3'71}11'&@)
i+5=0 z>+1] gl (2.6)
i>1,52>
n—1 i + 1 )
- Z - [bz+1 j—1 (_1)Jb;+1,j—1]li,j(h)
=1, 7
i>0,5>1
£ Gl + D &iglig(h)
i+5=0 itj=nt1,
i>1,5>1
where
=iy 0<i<mn, j=0,
+ .~ _ iklpt i
o= (=D e = BEb oy — (21)7b ]
fij — +§[bz‘tl,j71 - <_1)jbi11,j71]’ O0<i+tj<n-1 721,
ij - (—1)j05j + %—[bitl,j—l - (_1)jb;—1,j—1]7 i+j=mn, j=>1,
%‘[b?_fl,jfl - (_1)jb¢_71,j71]7 it+j=n+l,j52>1
If the subscript ¢ in bij is less than zero in the above equalities, then b . =0. It is

easy to check that &; ; in (2.6) can be taken as free parameters.
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Now we claim that (2.1) holds and o; (i =0,1,---,[3]), Bi (i =0,1,--- ,n—1),
v (i=0,1,---,n—=3)and 6; (¢=0,1,--- ,n—1) can be chosen arbitrarily. In fact,
similar to (2.17) and (2.19) in [22], one has that

Li j(h) = 2(h — 1)1; j—2(h) + 2141 j—2(h), (2.7)
and
s h) =g 2= D= D) =2 = D= D)

+(2i 4§ —2)1;—2 ;(h)].

Next we will prove the claim by induction on n. Indeed, a direct computation
using the above two equalities (2.7) and (2.8) gives that

Ioa(h) = 2(h — 1)Ioo(h) + 211 o(h),
Lyo(h) = $10,0(h) — 3(h — 1)1 o(h),
Io3(h) = 2(h — 1)1o1(h) + 211 1(h),
Il’g(h) = (h — 1)[1’0(h) + I()’()(h)7
Ia(h) = 2101 (h) = 3(h = 1) 11 1(R),
Iso(h) = (3h% — %h + 1)1 o(h),
Ioa(h) = 2(2h% — 4h + 3)Ioo(h) + 6(h — 1)I1 o(h),
Lis(h) = $1g.1(h) + £(h — 1)1 1(h),
Iy o(h) = (h = 1)Ioo(h) — 3(h* — 2h — 3) 11 o(h),
I31(h) = —&(h — 1)Io1(h) + 3= (8h% — 16h + 33)I1 1 (h),
Iio(h) = 3Io0(h) — (213 — 6h2 + 9h — 5)11 o (h),
and
Ios(h) = 3(5h* = 10h + 8)Ip,1(h) + Z(h — )11 1(h),
I 4(h) = 4(h — V)Ioo(h) + 5(h* = 2h + 3) 11 o(h),
Ir3(h) = 35 (h — DIoa(h) — 55(6h% — 12h — 19) 11,1 (h),
I3 5(h) = 310(h) + 5 (2h3 — 6K + 13h — 9) 11 o(h),
Iy 1 (k) = 15 (4h* — 8h 4+ 53)Ip,1 (h) — 1a= (4h® — 12K + 21h — 13)1; 1 (h),
Iso(h) = 75 (8h* — 12h3 + 22h2 — 20h + 15)11 o(h),
I 5(h) = 2(h — V)Io(h) + 3(3k* — 6h + 8) 11 1(h),
Ira(h) = 2(4h? = 8h + T)Ioo(h) — £(2h% — 6h* — 17h + 21)11 o(h),
Is3(h) = — 2= (2h? — 4h — A7) I 1 (h) + 135 (8h® — 24h? + 63h — 47)11 1 (h),
Iia(h) = 3(h — 1)Io0(h) — 55(6h* — 24h3 + 49h? — 50h — 45) 11 o(h),
I51(h) = — 555 (8h® — 24h? 4+ 41h — 25)1y 1 (h)
+ 1= (128Rh* — 512k + 1020h? — 1016A1055)1; 1 (h).

Hence, one has that

5 4
D Gglig(h) = Gyl + D &islis(h)
i+j=0 i+j=0 i+j=5,
i>1,5>1

=(a2h® + &rh + &) Ioo(h) + (Bsh® + B2h? + Bih + Bo) I1,0(h)
+ (;th + ’Vylh + ’3/0)]071(}7,) + (53}13 + 52h2 + 51}7, + 50)[1,1(]1),
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and

6 5
Mo GigLig(h) =Y &L+ > & ilii(h)
i+5=0 i+5=0 i+5=6,
i>1,5>1
=(G2h® + &1h + éo)Lo,o(h)
+ (Bah™* + B3h® + B2h® + Bih + Bo) I10(h)
+ (43h® + 42h® + 41h + 40) Lo,1(h)
+ (0ah™ + 03h3 + 0282 + 61h + 0o) 11,1 (h),

where

G = 4804, G = 202 — 80,4 + &2,0 + 4&1 4,

dp = &0,0 — 2602 + 5820 + &2 — E2,2 + 3840 + 6804 — 4814+ 320,

By = =180+ 2632,02 = 3630 — 5620+ 30+ 3814 — 3E3,
Br=E1p— 260 — 36,0+ 6804+ 260 — 2640 — S& 4+ 185,

Bo = €10+ 2602 + 3620 — €12+ &0 — 6804 + &2 + 30 + 4&14 — 33,
Yo = 155841, N1 = 2803 — =831 + 5823 — 155841,

70 =&, — 250,3v+ S+ 26+ 21 — Bls+ 2,
03 = —quxa1, 02 = 35€31 — 52603+ 32&a1,
01 = —§€2,1 + %&1,3 — §7§§3,1 + %52,3 - %54,17

So="E11 4 261+ 2603 — S€13+ B+ B+ 224,
and

G = 4804+ 2804, a1 =280 — 80a + Eop + 4614+ 380 — 460,
G = &0 — 2802+ 3620+ 12 — S22+ 20
+680,4 — 4614 + 3832 — 342 + $E24,
By = 1850 — 584,25 Bs = — 360+ 5832 — 280 + 22 — 3824,
Bo=1L¢s0— Lo+ 360+ 26— 80+ L60— Beyo+ 64,
B = E12— 2830 — 3620+ 6804+ 222 — 3&u0
3+ B8 — 360+ 280+ Yoy,
Bo=E1,0+ 2602+ 2620 —&12+ &30 — 6804 + Eo2
+580+4614— 382+ &0+ 380 — 164,
A3 = — D251, Y2 = 405 + 1oséa1 + 52851 — 1aE3.3,
A1 =280,3 — =831 — 8805 + 2583 — ebat — 1sésa + slss + 25,
Yo =01 — 2603+ 2601 + 13+ B&s1 + o5 — B
+ 35800+ Bl + by — 25,

128 : 16 512 16
01 = 715585.1, 03 = —70584,1 — 7155851 1+ 10583.35
: 8 12 16 68 16 12
02 = 35831 — 52623 + 328a1 + 72851 — 32833 + 815,
2 2 1 2 24 4
0y = —2&a+ 263 — 3281+ Blos + 203 — 2

1016 6 24
—1re85.1 + 2833 — T 15,
00 = &1+ 58 + 203 — 58a + 5581 — Flos + s
52 211 94 32
+1056a1 + 537851 — 705833 + &5
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A simple computation shows that

det Ay = det ( (G, 61, &, B3, Ba, Pr, Bo, 03, 0, 1, 00, 41, %0) )
0(&0,4,£0,2: 60,0 64,05 €3,0,€2,0,€1,0,€4,1, 63,1, 62,1, 61,1, €2,3, €1,3)
L
214375’
and

a(&Qa d17&07 637525 BhBO)Si’M 52751a 50,’?1aﬁ/07647547§/2)

As :3(50,4,50,2,fo,o,54,0753,0,52,0,51,0,54,1,53,1,52,1751,1,52,3751,3,55,0755,1753,3)
AyA; A, As
o s 0o o0
o ooz oo |
0 0 2

where 0 is a row vector, and A;,i = 1,2,3 are column vectors. A straightforward
calculation gives that

1 128 4 3014656
As = —det Ay X — X ——— X —— = oo .
det As = —det Ay X £ X 755 X {05 = 3330516875

The above discussions yield that the claim holds for n = 4, 5.

k+1
Now assume that the claim holds for " & ;I; j(h),k <n—1(n>4). In view
i+j=0
of (2.7) and (2.8), one gets that

IO,n 2(h — l)Iom_Q + 2[1771_2
Il,n 2(h — 1)[1,»,172 + 2[2’»,1,2

]2,n—1 2(h — 1)12,n—3 + 213,n—3

I7L71,2 2(h - 1)Infl,O + 2In,O
I, s [(2n = D21 — (20 = 2)(h — 1) In-1,1 + (20— 4)(h — 1) —3.1]
In70 %[(n - 1)]71,270 - (n - 1)(h - 1)]»”,1’0 + (n - 2)(h - 1)]»”,370]

Therefore, by the induction hypothesis and noticing that Iy, (h) and I, 0(h) do
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k+1

not appear in > & ;I; j(h),k <n—1, one finds that, for k =n
i+5=0

n+1

n—1 n
S Galig(h) = > &iliz(W)+ Y &l (h)

i+5=0 i+5=0 i+j=1
i>1,5>1

+ ondon(h) + nolno(h) + > & jli;(h)

itj—nt1
i>1,5>1
[%] n—3 ] n-2
( Z h)foo+(Zﬂz )11,0-1-(Z’%hz)fo,l-i-(z&hl)h,l
i—0 i—0 i—0

+280,n[(h — D) lo,n—2(h) + I1n—2(h)] + 6"7’0[(“ = DIn—20(h)
—(n=1)(h = V)In-1,0(h) + (n—2)(h — 1) In_30(h)] (2.9)
+261,[2(h — 1) [1,n—2(h) + I2,n—2(h)]
+282,n-1[2(h — 1) I2,n—3(h) + I3,n-3(R)] + - -

(

fn,l
m[@n — DI 21(h) —2(n—1)(h—1)In_1,1(h)

+2(n —2)(h = Dln-3,(h)]
]

+

[

w3

é(v )I()() (ni zh)ho
=0 1=0
(i )Io 1(h) + (” gihi)h@(h),
1=0

where &, B:, 7, 0i, &, Bi, 7 and 8; are constants.
Next, we will prove that &;, i = 0,1,2,---,[2], B;, i = 0,1,2,--- ,n — 1, ¥,

i=0,1,2,---,n—3and 6;, i =0,1,2,--- ,n — 1 can be taken as free parameters.

In fact, by the induction hypothesis, one obtains that a;, ¢ = 0,1,2,--- ,["T_l],

Bi,i=01,2-n—2,%,i=012-,n—4and &, i = 0,1,2,--- ,n — 2
are independent of each other. That is, the determinant of the following Jacobian
matrix

a(&Lfl P 76[07/3”—27"' 7/307
[*5=]

6”*27 o 5607 ’S/n*47 e 75/0)
Ay =
8(51.073.[1171]7' o 7€i[n—1 2309 £k07l7L727 T 757%721107
2 2

]

gp()ﬁ‘]n727 e 7‘£Pn72,q07580»in747 T 7§Sn74,t0)

is not equal to zero. Here &y, and &, ¢ do not appear in the above Jacobian matrix
Ay, and the sum of subscripts of &; ; in the Jacobian matrix is less than or equal to
n . When n > 4 is an even number, some explicit computations give the following
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Jacobian matrix
8(07["7*1]7 o 76407571727 T 7BOa g’n72a o 7805

Yn—4," 70, 5[[%]; anla gn7177n73>

A=

a(fiod[%] y vgi[nT—leo’ gk(hlnf’z’ T 7£kn,727l07£pU7Qn—27 T ’gpn727q0’

Eontnsr* +Eon o €0 En0sEnt En23)
Ag Ay Ay A3 Ay
0 2=l 0 0 0
=[o o -+ o0 0
00 o0 [[3= o0

o 0 o0 % v

in view of (2.7) and (2.8), where 0 is a row vector, A;,i = 1,2,3,4 are column
vectors and

38
= n=4
v=1% 2n—6)!! ’ (2.10)
{(_1)ng Eznflgii’ n=9.
It is easy to get that
2[71] n
Al = A 0,
Al = [[ T || #
which implies that a;, i = 0,1,2,---,[3], Bjy i = 0,1,2,-- ,n—1, %, i=
0,1,2,---,n—3 and d;, ¢« = 0,1,2,--- ,n — 1 can be taken as free parameters.

When n > 4 is an odd number, a similar calculation gives that
8(07["7—1]7 te 7d075n727 e 7607 g’n737 T 7507

'_)/71,—57 e 5’707 Bn—lv Sn—la '711—3)
A_ =

a(gioﬂ'[nT—l] y " 751’[%1]71’0’ gko,lnfzﬁ T 7§/€n72,l07£1007qn737 e afpnfa,qm

Eso.,tn_r,, e 3§Sw,—57t0? 61’1,05 61’1,17 fn—2,3)

AyAs  As Ay
o 1 0 0

n—1
2(1—1) ’
H 2i+1 0

=2

0 0 * v

[e=)
o

where A;,7 = 5,6, 7 are column vectors. And

n—1

v 2(1 —14)
Al=" A
A= T Gl #0
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This ends the proof. O

Remark 2.1. When n = 5, in view of (2.7) and ( 8), one can obtain that the
coefficient polynomials of Iy 1(h) and Iy 1 (h) are —52-&5 1h% 4+ and {22&s 1 bt +

-+, respectively. That is, v3 = 7%55,1 and §; = 1115555 1, which shows that 3
and d04 are interdependent. Hence, all the coefficients of the coefficient polynomials
of Ino(h), I1,0(h), In1(h) and I 1(h) in (2.1) can not be chosen arbitrarily unless
one of v,_o and J,,_1 is removed.

Next we want to express the first order Melnikov functions in terms of the
complete elliptic integrals of first and second kind K and E. We need a result
derived in [2], which we state in Lemma 2.2 below.

Lemma 2.2. [2]. Let the complete elliptic integrals of first and second kind be

3 de 3
K(k) :/ —_— = / V1 —k2sin®0df, k€ (—1,1).(2.11)
0 V1—k2sin®0 0
Then, the following statements hold:
(1) Let h € (0,2). Then

Io1(h) = 2v2[(h — 2)K(v/h/2) + 2E(y/h/2)],

03 (2.12)
na(h) = 22 (2~ NEW/AR) + 200~ )E(/A7)];
(2) Let h € (2,400). Then
Joa(h) = 2V2hE(\/2/h), 213)
2 2.13
Jia(h) = g\/ﬁ[(z — h)K(v/2/h) + (h — 1)E(\/2/h)].
Proof of Theorem 1.1. (i) A straightforward calculation yields that
Iyo(h) = 2arccos(1 — h), I10(h) = 2v/2h — h2. (2.14)
Inserting (2.12) and (2.14) into (2.1) gives that (1.9). Moreover,
a; = 2a;, O<z<[ l, =28, 0<i<n-—1,
4
co = —4v270 + i%,
2 4+/2
—2f72 1_4f71 le"‘ {5171§7;§n_2a
2 4/2 2v2
Cp—1 = 2\f’7n 2 — \3[5n—2 + T\[an—lv Cp = _T\[dn—h (215)
4
do = 4V/27y0 — i&)a

d; = 4v2y; + 7\/551'71 _4v2

Vs, 1<i<n-—2,
3

dn1 = %\/ﬁdan - 47\3/5671717 dn, = ?677,71'
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Now the independence of the constant coefficients in (1.9) follows by induction.
Indeed, using (2.15), one finds that

—H2 9 0 42
3(do,d1,d2701) % _% 0 0
B3:—: ,
3(50,51752,%) 0 L2 42 g
2 0 0 442 0 0
42 42
B0 0 0 42
3(d0,d1,d27017d3702) 0 4T\/§ % 0 0 0
B4: =
8(50,5175%70753771) _¥ 4T\/§ 0 2\/§ 0 _4\/5
0 0 B 0| o
2v2 4v2
0 -3 &2 0| 0 2V2
A direct calculation shows that |Bs| = —102%. In the matrix By, multiplying the

second and third columns by three, respectively, and then adding them to the sixth
column, one gets that

&2 9 0 4/2) 0 0
o IR
42 4V2
g,-| © & % V00
4v2 4v2
0 0 B0 -HE42
o 2 a0 | 0

By the property of determinant, one obtains that

Thus, do,d1,ds,ds,c1 and co are independent.

_ 32768
|By| = [By| = ——.

81

Now assume that the statement

holds for all i <n — 1 (n > 4). That is, the determinant of the following matrix

6(d07d1, -

,dn737dn727cl7c27 e

) Cn73)

By =

8(50’51’. ..

7671*37671*27707717 e

I 7”*4)
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is different from zero. In view of (2.15), one has that

a(do,dl, oo dn_3,dn_2,c1,c2," - ,Cn73,dn71,0n72)

B=
3(50,51,“' 3 0n—3,0n-2,7%0,71, " ,7n—4,5n—177n—3)

-2 9 ... 0 0 4/2 0 -~ 0| 0 0
W24 0 0 0 4/2 - 0] 0 0

o 0 ----% 0 0 0 0| 0 4v2

0 0 ... 2 42 g g 0] 0 o0

=| 22 42 0 0 2/2-4/2--- 0| 0 0
0 -22.... 0 0 0 2v2-- 0] 0 0

0 0 W29 0 0 2V2| 0 —4v2
0 0 0 %2 o0 o 0 -2 o

0 0 —22 2 g 0] 0 2v2

Similarly, in the matrix B, multiplying the (n — 2)th and (n — 1)th columns by
three, respectively, and then adding them to the last column, one gets that

-2 g ... 0 0 4/2 0 -~ 0| 0 0
W2 2.0 0 0 0 4/2 - 0] 0
0 0 -2 9 0 o0 0|l o o
0 0 () 0ol 0 o0
B=| 22 42 0 0 2/2-4V2--- 0| 0 0
0 -22.... 0 0 0 2v2--- 0| 0 0
0 0 &2 9 0 0 ---2v2) 0 0
0 0 0 22 o 0 - 0|24
0 0 —2 A2 g 0 .. 0| 0 42

Hence,

_ 32
Bl = [Bl = - [Bo| 0.

Observe that a; is expressed by «; and b; is expressed by (5;. One has that
a; (i =0,1,---,[5]), b;i (i =0,1,--- ,n—1),¢ (1 =1,2,--- ,n—2) and d; (1 =
0,1,--- ,n — 1) can be chosen arbitrarily.

The proof of the conclusion (ii) follows by using the same arguments which we
omit for the sake of brevity. This ends the proof of Theorem 1.1.
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3. The lower bounds for the number of limit cycles

Once we are able to get the desired expansions for My(h) and My (h) withn = 1,2, 3,
we may use some known results [5,7,14,15,17] to obtain the lower bounds of the
number of limit cycles of system (1.5).

Lemma 3.1. For n = 3, the following statements hold.

(i) If 0 < h < 1, then
M()(h) :O'lh% —|— O'Qh —|— Ggh% —|— U4h2 —|— O’5h% —|— O'6h3

. o (3.1)
+o7hz + O’gh4 + ogh2 + Ulohlo + O(hlo),

where 0, 1 =1,2,--- 10 are constants and can be chosen arbitrarily.

(i) If 0 < h — 2 < 1, then

M () =g + pr(h = 2) + pi (h — 2) In(h — 2) + pi (h — 2)°
+pE(h— 22 In(h — 2) + pE(h — 2)° + o((h — 2)%),

where pf, 1=20,1,---,5 are constants and can be chosen arbitrarily.

Proof. (i) By (2.9), one gets that

3
= > Gulig()+ Y &l

i+g=0 i+j—4,

i>1,7>1
1
=[(280.2 + &2.2)h + 0.0 — 2802 + 552,0 + &2 — &.2]lo0(h)
1 ) 2 1 2
+ [g(fs,o — &)l + (G2 — 380 — 580+ gfz,z)h

+§1,0+2§02+1520-512-!-5304—522][10(}1) (3.3)

+ [(250,3 — 53 )h+ &1 — 28,3 + 52 1+ g& 3 + 53 1}[0 1(h)

8 2
+ [gﬁ&lh + (551,3 — 553,1 - g&,l)h
2 6 33
+&1+ 552,1 + 2&0,3 — 351,3 + %53,1}11,1(]7/)

:(alh + Oco)]o,o(h) + (52]12 + ﬁlh + 50)11,0(}")
+ (’Y1h + 70)10,1(h) + (52h2 +61h+ 50)11,1(h)-

It is easy to check that a;; (¢ =0,1), 8; ( =0,1,2), 7 (k=0,1) and §; (I =0,1,2)
are independent of each other.

With the help of the command “series” in Maple 18, one has the following
generalized series expansions of I o(h) and I; g(h) for 0 < h < 1

Toa(h) =2V + 2+ 5208+ St 4 Tt 4 o, (3.4)
Il,o<h)=thz_£hf_£h VR VR

16 64 1024
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To prove the desired conclusion, it suffices to obtain the expansions of K (k) and
E(k) for k € (—1,1). Taking = k%sin® @ in the following series
3! (2n — 1!

_1 1 no, .
(1-x) 2=14got e +~~+Wx +--, ze[-1,1),

one gets that, for k € (—1,1),

-

(1—k2sin29)_% =1+ k251n 9+—k4sm 0+ -

4
(2n — i 2n g 2n

Since the series (3.5) is uniformly convergent, integrating it item by item from 0 to
5 gives that

(3.5)
+

“+oo
T (2n —1)IN\2
Kk ==+ = — ) k" K —-1,1). 3.6
(k) 2+2nz_:( (2n)!!> ke (=11) (3.6)
Similarly, one obtains that
r o Ix (2n — 1)!\2 k2n
== —= k -1,1 .
: 22;( i Y ke (1), (3.7)
in view of
1 1 1 5 3! 4 2n -3

A direct calculation using (2.12), (3.3), (3.4), (3.6) and (3.7) yields that
M()(h) :O'lh% —|— O'Qh —|— Ggh% —|— O'4h2 —|— O’5h%
+ a6h® + U7h% + ogh* + 09]1% + o10h” + O(hs)’

where
Vor
o1 =2V2(ag + Bo), 02 = 5 —— (70 + do),
2 2
03 = %Oéo +2v2a; — gﬂo +2v284,
_\/57? +\/§7r _3\/§7r5+\/§7r
04 = 39 Yo B 71 32 0 B) 1y
3\/ V2 V2 V2
05 =25 +? 1_750_751+2\f52’
3\/§7T ﬂw 5\f7r 3\fﬂ' \/571'
06 =g ot M T g 0T Ty Nt 0
5v/2 3v2 V2 V2 V2
07 = g @0 + =0 Y~ *ﬂo - *51 5 — B,
25f7r 32 735[7%75\/%73\/%5
787 96384 0T 512 T 16384 0T Th12 0T T3 %
35v/2 5v/2 5v/2 V2 f
79 = 9916 M0 T g M 1024ﬂO - 7& 67
24527 2527 315\f7r 35\f7r 5271
o10 = Yo + M= do — o1 — d2.

524288 0 " 16384 524288 ° 16384 ' 512
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Then, using the above equalities, one finds that the determinant of the following
Jacobian matrix

d(o1,03,05,07,09,02,04,06,08,010)

8(0&07 a1760aﬂ1762a707’71a 607 613 52)

is 553753 > Which means that oy, i = 1,2,---,10 can be chosen arbitrarily.

(ii) We only prove the conclusion for M, (h). The proof of M_(h) follows in the
same way. Similar to (3.3), one can obtain that

My (h) =(af b+ o ) Joo(h) + (B3 h* + B b+ B ) J1,0(h)

3.8
+ (v h+ ) Joi (h) + (65 % + 67 h+68) 11 (h), (38)

and o (i =0,1), ﬁ;‘ (j=0,1,2), v (k=0,1) and §;" (I =0,1,2) are independent
of each other. Note that Joo(h) = 2w, Jio(h) = 0. Using the expansions for
0 < h — 2 < 1 which are obtained by the command “series” in Maple 18,

Vi - WK(\/2]h) = — 5\/521“2@ —9) 4 ?(h —2)In(h —2) — \1/%(151112 +2)(h —2)°

+¥(h*2)21n(h*2)+£(35ln2711)(h72)3
- ;T\/f(h —2)*In(h — 2) + o((h — 2)"),
VhE(\/2/h) =V2 + §(1+5ln2)(h_2)_g(h_g)ln(h_m
+%(3—101n2)(h—2)2+%(h—z)hn(h_g)
3v2 s 3V2 3 .
+M(51n2—2)(h—2) —m(h—z) In(h —2) +o((h —2)"),
Vi(h = 1)E(\/2/h) =v2 + g(9+51n2)(h72)7§(h72)1n(h,2)
5v2 2 15v2 )
+ Seg (7T+30m2)(h = 2)° — 2E= (h —2) In(h - 2)
V2 s 13V2 .
— 5045 (032 = 18)(h = 2)* + T2 (h = 2)* In(h — 2)
+o((h—2)"),

one obtains that

M. (h) =pg + pi(h —2) + p3 (h = 2) In(h — 2) + p3 (h — 2)> + pf (h — 2)* In(h —32)9)
+ o (h—2)* + pf(h —2)*In(h —2) +o((h —2)*),0 < h—2 < 1, .
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where

4 8 16
ps =2mad +4raf + 478 + 8y + gag + géf —5;7

1
py =2maf + 5(5In2+ Dryg +5(In2 + 1)y
1 1 2
+ 5(3 —5In2)5d + 5(13 —15In2)d; + §(17 —151n2)d5,
1 1
p§r=—§7+—ﬁ+*5++5f+25§2

1 1
=5l (3 —10In2)yg + ﬁ(70 In2 + 19)y + 6—4(1 —30In2)d;

1 5
(49 — R (¢ I +
+ 3 (49 — 110In2)d67 + 8(71 1141n2)d5,

+:i+ 7 o 35+ 25+ 1795;

Pa =350 — 167
3 1 1
T = In2-—2 — (6 —25In2 ———(751n2 — 26)6
1
- ﬁ(285 In2+ 14)5; + —(574 —16051n2)d5,
3 5 5 19 107
+ _ + 5+ T 5F 75
Pe == 513 T a5~ 51a% T 35g0l T 138

The independence of p; (i =0,1,--- ,6) follows from

det(a(pg,pipé* pipi,p?mé*))_ 175 ,

= T

8(043_’04;_7’70 7’71 76+76;’_?5;) 4608
This ends the proof of the Lemma. O
Proof of Theorem 1.2. From Lemma 3.1, one knows that o;, 7 = 1,2,---,10 can

be chosen arbitrarily. Then, one can choose
0< 01 KK -03K01 K —05<K 0K —07 K03 <K —09 L 019

such that the sign of My(h) has been changed 9 times. In other words, My(h) can
have 9 simple zeros near h = 0. The other cases for My (h) can be proved similarly.
This ends the proof of Theorem 1.2 by Remark 1.1.

4. Conclusion

In this paper, we get the detailed algebraic structure of the first order Melnikov
functions of the perturbed pendulum equation (1.5) by using two iterative formulas.
In order to obtain the lower bounds of the number of limit cycles of system (1.5), we
also verify the independence of coefficients of the coefficient polynomials of several
curvilinear integrals by induction on n. Then, for n = 1,2,3, we get the lower
bounds of the number of limit cycles of system (1.5) in both the oscillatory and
rotary regions. But for the general natural number n, it is difficult to get the lower
bounds, because the Melnikov functions involve the complete elliptic functions of
first and second kind. These results may be further improved in the future by
developing more powerful computational tools or methods.
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