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The Upper Semicontinuity of Random Attractors
for Non-autonomous Stochastic Plate Equations

with Multiplicative Noise and Nonlinear Damping∗
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Abstract Based on the existence of pullback attractors for the non-autono-
mous stochastic plate equations with multiplicative noise and nonlinear damp-
ing defined in the entire space Rn by Xiaobin Yao in [15], in the paper, we fur-
ther investigate the upper semicontinuity of pullback attractors for the prob-
lem.
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1. Introduction

Plate equations have been investigated for many years due to their importance in
some physical areas such as vibration and elasticity theory of solid mechanics. The
study of the long-time dynamics of plate equations has become an outstanding topic
in the field of the infinite dimensional dynamical system [3–6,9].

In this paper, we study the upper semicontinuity of pullback attractors for the
following non-autonomous stochastic plate equation with multiplicative noise and
nonlinear damping defined on the unbounded domain Rn:

utt + ∆2u+ h(ut) + λu+ f(x, u) = g(x, t) + εu ◦ dw
dt

(1.1)

with the initial value conditions

u(x, τ) = u0(x), ut(x, τ) = u1(x), (1.2)

where x ∈ Rn, t > τ with τ ∈ R, λ > 0 and ε are constants, h(ut) is a nonlinear
damping term, f is a given interaction term, g is a given function satisfying g ∈
L2
loc(R, H1(Rn)), and w is a two-sided real-valued Wiener process on a probability

space. The stochastic equation (1.1) is understood in the sense of Stratonovich’s
integration.
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The functions h, f satisfy the following conditions.
(1) Let F (x, u) =

∫ u
0
f(x, s)ds for x ∈ Rn and u ∈ R. There exist positive

constants ci(i = 1, 2, 3, 4), such that

|f(x, u)| ≤ c1|u|γ + φ1(x), φ1 ∈ L2(Rn), (1.3)

f(x, u)u− c2F (x, u) ≥ φ2(x), φ2 ∈ L1(Rn), (1.4)

F (x, u) ≥ c3|u|γ+1 − φ3(x), φ3 ∈ L1(Rn), (1.5)

|∂f
∂u

(x, u)| ≤ β, |∂f
∂x

(x, u)| ≤ φ4(x), φ4 ∈ L2(Rn), (1.6)

where β > 0 and 1 ≤ γ ≤ n+4
n−4 .

(2) There exist two constants β1, β2 such that

h(0) = 0, 0 < β1 ≤ h′(v) ≤ β2 <∞. (1.7)

(3)

δ > 0 satisfies λ+ δ2 − β2δ > 0, β1 > δ. (1.8)

Just for problems (1.1)-(1.2) and the corresponding plate equations, on the un-
bounded domain, the authors investigated the asymptotic behavior for stochastic
plate equation with different noise (see [12–15] for details). To the best of our
knowledge, it has not been considered by any predecessors for the upper semicon-
tinuity of pullback attractors for the stochastic plate equation with multiplicative
noise on unbounded domain. It is well known that multiplicative noise makes the
problem more complex and interesting even to the case of bounded domain. Based
on the results in [15] as well as the theory and applications of B. Wang in [10, 11],
we decide to study the upper semicontinuity of pullback attractors for problems
(1.1)-(1.2).

The rest of this paper is organized as follows. In the next section, we present
some notations, definitions and a criteria concerning the upper semicontinuity of
non-autonomous random attractors with respect to a parameter. In Section 3, we
show the upper semi-continuity of random attractors.

Throughout the paper, we use || · || and (·, ·) to denote the norm and the inner
product of L2(Rn), respectively. The norms of Lp(Rn) and a Banach space X are
generally written as || · ||p and || · ||X , respectively. The letters c and ci (i = 1, 2, . . .)
are generic positive constants which may change their values from line to line or
even in the same line and do not depend on ε.

2. Preliminaries

In this section, we first present some notations, then recall some definitions and
known results regarding non-autonomous random dynamical systems from [1, 2, 7,
8, 11,16], which are useful to our problem.

Let (Ω,F ,P) be the standard probability space, where Ω = {ω ∈ C(R,R) :
ω(0) = 0}, F is the Borel σ-algebra induced by the compact open topology of Ω,
and P is the Wiener measure on (Ω,F). There is a classical group {θt}t∈R acting
on (Ω,F ,P) which is defined by

θtω(·) = ω(·+ t)− ω(t), for all ω ∈ Ω, t ∈ R,



The Upper Semicontinuity Random Attractors for Plate Equations 267

then (Ω,F ,P, {θt}t∈R) is a parametric dynamical system.
Let −∆ denote the Laplace operator in Rn, A = ∆2 with the domain D(A) =

H4(Rn). We can also define the powers Aν of A for ν ∈ R. The space Vν = D(A
ν
4 )

is a Hilbert space with the following inner product and norm

(u, v)ν = (A
ν
4 u,A

ν
4 v), ‖ · ‖ν = ‖A ν

4 · ‖.

For brevity, the notation (·, ·) for L2-inner product will also be used for the notation
of duality pairing between dual spaces and ‖ · ‖ denotes the L2-norm.

Let E = H2 × L2, with the Sobolev norm

‖Y ‖E = (‖v‖2 + (λ+ δ2 − β2δ)‖u‖2 + ‖∆u‖2)
1
2 , for Y = (u, v) ∈ E. (2.1)

Definition 2.1. Let θ : R × Ω → Ω be a (B(R) × F ,F)-measurable mapping.
We say (Ω,F ,P, θ) is a parametric dynamical system if θ(0, ·) is the identity on
Ω, θ(s+ t, ·) = θ(t, ·) ◦ θ(s, ·) for all t, s ∈ R, and Pθ(t, ·) = P for all t ∈ R.

Definition 2.2. Let K : R × Ω → 2X be a set-valued mapping with closed
nonempty images. We say K is measurable with respect to F in Ω if the map-
ping ω ∈ Ω → d(x,K(τ, ω)) is (F ,B(R))-measurable for every fixed x ∈ X and
τ ∈ R.

Definition 2.3. A mapping Φ : R+ × R × Ω × X → X is called a continuous
cocycle on X over R and (Ω,F ,P, {θt}t∈R) if for all τ ∈ R, ω ∈ Ω and t, s ∈ R+,
the following conditions (1)-(4) are satisfied:

(1) Φ(·, τ, ·, ·) : R+ × Ω×X → X is (B(R+)×F × B(X),B(X))-measurable;
(2) Φ(0, τ, ω, ·) is the identity on X;
(3) Φ(t+ s, τ, ω, ·) = Φ(t, τ + s, θsω, ·) ◦ Φ(s, τ, ω, ·);
(4) Φ(t, τ, ω, ·) : X → X is continuous.

Hereafter, we assume that Φ is a continuous cocycle on X over R and (Ω,F ,P,
{θt}t∈R), and D is the collection of certain families of nonempty bounded subsets
of X parameterized by τ ∈ R and ω ∈ Ω:

D = {D = {D(τ, ω) ⊆ X : D(τ, ω) 6= ∅, τ ∈ R, ω ∈ Ω}}.

Definition 2.4. Let D be a collection of certain families of nonempty subsets
of X and K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then K is called a D-pullback
absorbing set for Φ if for all τ ∈ R and ω ∈ Ω and for every B ∈ D, there exists
T = T (B, τ, ω) > 0 such that

Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)) ⊆ K(τ, ω) for all t ≥ T.

If, in addition, K(τ, ω) is closed in X and is measurable in ω with respect to F ,
then K is called a closed measurable D-pullback absorbing set for Φ.

Definition 2.5. Let D be a collection of certain families of nonempty subsets of X
and A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D. Then A is called a D-pullback attractor for
Φ if the following conditions (1)-(3) are fulfilled: for all t ∈ R+, τ ∈ R and ω ∈ Ω,

(1) A(τ, ω) is compact in X and is measurable in ω with respect to F .
(2) A is invariant, that is,

Φ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω).
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(3) For every B = {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,

lim
t→∞

d(Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),A(τ, ω)) = 0.

Finally, we present a criteria concerning the upper semicontinuity of non-autono-
mous random attractors with respect to a parameter.

Theorem 2.1. Let (X, ‖ · ‖X) be a separable Banach space, Φε be a continuous
cocycle on X over R and (Ω,F ,P, {θt}t∈R). Suppose that
(i) Φε has a closed measurable random absorbing set Kε = {Kε(τ, ω) : τ ∈ R, ω ∈ Ω}
in D(X) and a unique random attractor Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω} in D(X)
and
(ii) there exists a map ς : R → R such that for each τ ∈ R, ω ∈ Ω,K0(τ) = {u ∈
X : ‖u‖X ≤ ς(τ)} and

lim sup
ε→0

‖Kε(τ, ω)‖X = lim sup
ε→0

lim sup
x∈Kε(τ,ω)

‖x‖X ≤ ς(τ). (2.2)

(iii) There exists ε0 > 0, such that for every τ ∈ R and ω ∈ Ω,⋃
|ε|≤ε0

Aε(τ, ω) is precompact in X. (2.3)

(iv) For t > 0, τ ∈ R, ω ∈ Ω, εn → 0 when n → ∞, and xn, x0 ∈ X with xn → x0

when n→∞, it holds

lim
n→∞

Φεn(t, τ, ω)xn = Φ0(t, τ)x0. (2.4)

Then for τ ∈ R, ω ∈ Ω,

dH(Aε(τ, ω),A0(τ)) = sup
u∈Aε(τ,ω)

inf
v∈A0(τ)

‖u− v‖ → 0, as ε→ 0. (2.5)

3. Upper semicontinuity of pullback attractors

In this section, we will consider the upper semicontinuity of pullback attractors for
the stochastic plate equations (1.1)-(1.2) on Rn.

Next, we will use Theorem 3.1 to prove the upper semicontinuity of random
attractors Aε(τ, ω) when ε → 0. To indicate the dependence of solutions on ε,
we will write the solutions to problems (1.1)-(1.2) as (u(ε), v(ε)), that is, ϕ(ε) =
(u(ε), v(ε))T satisfies

du(ε)

dt + δu(ε) − v(ε) = εu(ε)z(θtω),

dv(ε)

dt − δv
(ε) + (δ2 + λ+A)u(ε) + f(x, u(ε)) = g(x, t)− h(v(ε)

+εu(ε)z(θtω)− δu(ε))− ε(v(ε) − 3δu(ε) + εu(ε)z(θtω))z(θtω),

u(ε)(x, τ, τ) = u
(ε)
0 (x), v(ε)(x, τ, τ) = v

(ε)
0 (x),

(3.1)

where v(x, t) = ut + δu− εuz(θtω)(the definition of z(θtω), see [15]).
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When ε = 0, the random problem (3.1) reduces to a deterministic dynamical
system:

du(0)

dt + δu(0) − v(0) = 0,

dv(0)

dt − δv
(0) + (δ2 + λ+A)u(0) + f(x, u(0)) = g(x, t)− h(v(0) − δu(0)),

u(0)(x, τ, τ) = u
(0)
0 (x), v(0)(x, τ, τ) = v

(0)
0 (x),

(3.2)

Accordingly, by virtue of Theorem 5.1 in [15], the deterministic non-autonomous
system Φ0 generated by (3.2) is readily verified to admit a unique D0(E(Rn))-
pullback attractor A0(τ) if g(x, ·) ∈ L2

loc(R, H1(Rn)).

Theorem 3.1. Assume that (1.3)-(1.8) hold. Then the cocycle Φε generated by
(3.1) has a unique D-pullback attractor {Aε(τ, ω)}ω∈Ω in H(Rn). Moreover, the
family of random attractors {Aε}ε>0 is upper semicontinuous.

Proof. (i) From Lemma 4.1 and Theorem 5.1 in [15], we know that Φε has a closed
measurable random absorbing set Eε = {Eε(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D

(
E(Rn)

)
,

where Eε(τ, ω) =
{
ϕ(ε) ∈ E(Rn) : ‖ϕ(ε)‖2E(Rn) ≤ R(ε, τ, ω)

}
, and a unique random

attractor Aε = {Aε(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D(E(Rn)), for each τ ∈ R, ω ∈ Ω,
Aε(τ, ω) ⊆ Eε(τ, ω).

(ii) Given ε ≤ 1, by (4.2) in [15], we have

R(ε, τ, ω) ≤ R(1, τ, ω) <∞,

and
lim sup
ε→0

R(ε, τ, ω) ≤ R(1, τ, ω).

So, for every τ ∈ R and ω ∈ Ω,

lim sup
ε→0

‖Eε(τ, ω)‖ = lim sup
ε→0

sup
x∈Eε(τ,ω)

‖x‖E(Rn) ≤ R
1
2 (1, τ, ω). (3.3)

Letting E1(τ, ω) = {ϕ(ε) ∈ E(Rn) : ‖ϕ(ε)‖2E(Rn) ≤ R(1, τ, ω)}, then⋃
ε≤1

Aε(τ, ω) ⊆
⋃
ε≤1

Eε(τ, ω) ⊆ E1(τ, ω). (3.4)

(iii) Given ε ≤ 1. Let us prove the precompactness of
⋃
ε≤1

Aε(τ, ω) for every

τ ∈ R and ω ∈ Ω. For one thing, by (3.4), Lemma 4.3 in [15] and the invariance of
Aε(τ, ω), for every η > 0, ε > 0, τ ∈ R and ω ∈ Ω, there exist T = T (τ, ω,E1, ε, η) >
0 and K = K(τ, ω, ε, η) ≥ 1, such that for all t ≥ T, k ≥ K, the solution ϕ(ε) to
(3.1) satisfies

sup
ϕ(ε)∈

⋃
ε≤1

Aε(τ,ω)

∥∥ϕ(ε)
(
τ, τ − t, θ−τω, ϕ(ε)

0

)∥∥2

E(Rn\Bk)
≤ η.

For another thing, by (3.4) we find that the set
⋃
ε≤1

Aε(τ, ω) is precompact in E(Bk)

and hence
⋃
ε≤1

Aε(τ, ω) is precompact in E(Rn).
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(iv) Let ϕ(0) = (u(0), v(0)) be a solution to (3.2) with the initial data ϕ
(0)
0 =

(u
(0)
0 , v

(0)
0 ), and U = u(ε)−u(0), V = v(ε)−v(0). It follows from (3.1) and (3.2) that

dU
dt + δU − V = εz(θtω)U + εz(θtω)u(0),

dV
dt − δV + (λ+ δ2 +A)U + f

(
x, u(ε)

)
− f

(
x, u(0)

)
= h

(
v(0) − δu(0)

)
− h
(
v(ε) + εu(ε)z(θtω)− δu(ε)

)
− εz(θtω)V

−εz(θtω)v(0) + ε(3δ − εz(θtω))z(θtω)U + ε(3δ − εz(θtω))z(θtω)u(0),

U(x, τ, τ) = U0(x), V (x, τ, τ) = V0(x).

(3.5)

Taking the inner product of the second equation of (3.5) with V in L2(Rn), and
then using the first equation of (3.5) to simplify the resulting equality, we obtain

1

2

d

dt
‖V ‖2 − δ‖V ‖2 + (λ+ δ2)(U, V ) + (AU, V ) +

(
f(x, u(ε))− f(x, u(0)), V

)
=−

(
h
(
v(ε) + εu(ε)z(θtω)− δu(ε)

)
− h
(
v(0) − δu(0)

)
, V

)(
εz(θtω)V

− εz(θtω)v(0) + ε(3δ − εz(θtω))z(θtω)U + ε(3δ − εz(θtω))z(θtω)u(0), V

)
. (3.6)

Similar to Lemma 4.1 in [15], we now estimate the terms in (3.6) as follows:

−
(
h
(
v(ε) + εu(ε)z(θtω)− δu(ε)

)
− h
(
v(0) − δu(0)

)
, V

)
≤− β1‖V ‖2 + h′(ϑ)δ(U, V )− h′(ϑ)εz(θtω)(U, V )− h′(ϑ)εz(θtω)(u(0), V ), (3.7)

h′(ϑ)δ(U, V ) ≤ β2δ

2

d

dt
‖U‖2 + β2δ

2‖U‖2 − h′(ϑ)δεz(θtω)‖U‖2

+ h′(ϑ)δεz(θtω)(U, u(0)), (3.8)

(λ+ δ2)(U, V ) =
λ+ δ2

2

d

dt
‖U‖2 + δ(λ+ δ2)‖U‖2 − (λ+ δ2)εz(θtω)‖U‖2

+ (λ+ δ2)εz(θtω)(U, u(0)), (3.9)

(AU, V ) =
1

2

d

dt
‖∆U‖2 + δ‖∆U‖2 − εz(θtω)‖∆U‖2 + εz(θtω)(U,∆2u(0)), (3.10)

−
(
f(x, u(ε))− f(x, u(0)), V

)
≤ β‖U‖‖V ‖ ≤ c

(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2

)
. (3.11)

Substitute (3.7)-(3.11) into (3.6) to obtain

1

2

d

dt

(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2 + ‖∆U‖2

)
+ (β1 − δ)‖V ‖2 + δ(λ+ δ2 − β2δ)‖U‖2 + δ‖∆U‖2

≤c
(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2 + ‖∆U‖2

)
+ (λ+ δ2)εz(θtω)‖U‖2

− (λ+ δ2)εz(θtω)(U, u(0)) + εz(θtω)‖∆U‖2 − εz(θtω)(U,∆2u(0))
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− h′(ϑ)δεz(θtω)‖U‖2 + h′(ϑ)δεz(θtω)(U, u(0))− h′(ϑ)εz(θtω)(U, V )

− h′(ϑ)εz(θtω)(u(0), V )−
(
εz(θtω)V − εz(θtω)v(0)

+ ε(3δ − εz(θtω))z(θtω)U + ε(3δ − εz(θtω))z(θtω)u(0), V

)
. (3.12)

Thanks to Young’s inequality, we find that from the second term to the last term
on the right hand side of (3.12) are controlled by |ε|c(1 + |z(θtω)|2)(‖U‖2H2(Rn) +

‖V ‖2 + ‖u(0)‖2H2(Rn) + ‖v(0)‖2), which along with (3.12) implies

d

dt

(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2 + ‖∆U‖2

)
≤c
(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2 + ‖∆U‖2

)
+ |ε|c(1 + |z(θtω)|2)(‖U‖2H2(Rn) + ‖V ‖2 + ‖u(0)‖2H2(Rn) + ‖v(0)‖2). (3.13)

Applying Lemma 4.1 in [15], there exists a constant c0 = c0(τ, ω,R, T ) > 0 such
that for all t ≥ T ,

‖u(0)‖2H2(Rn) + ‖v(0)‖2 ≤ c0. (3.14)

Together with (3.13) and (3.14) we get

d

dt

(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2 + ‖∆U‖2

)
≤c
(
‖V ‖2 + (λ+ δ2 − β2δ)‖U‖2 + ‖∆U‖2

)
+ |ε|c(1 + |z(θtω)|2). (3.15)

Therefore, applying the Gronwall inequality to (3.15) over (τ, t), we have

‖u(ε)(t, τ, ω, u
(ε)
0 )− u(0)(t, τ, u

(0)
0 )‖2H2(Rn) + ‖v(ε)(t, τ, ω, v(ε)0 )− v(0)(t, τ, v(0)0 )‖2L2(Rn)

≤cec(t−τ)(‖u(ε)
0 − u

(0)
0 ‖

2
H2(Rn) + ‖v(ε)0 − v

(0)
0 ‖

2
L2(Rn))

+ εc

∫ t

τ

ec(t−s)(1 + |z(θsω)|2)ds,

which along with (i),(ii), (iii) and Theorem 2.1 complete the proof.
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