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Painlevé Analysis and Auto-Bäcklund
Transformation for a General Variable Coefficient
Burgers Equation with Linear Damping Term∗

Yadong Shang1,† and Xiaoru Zheng2

Abstract This paper investigates a general variable coefficient (gVC) Burg-
ers equation with linear damping term. We derive the Painlevé property of the
equation under certain constraint condition of the coefficients. Then we ob-
tain an auto-Bäcklund transformation of this equation in terms of the Painlevé
property. Finally, we find a large number of new explicit exact solutions of
the equation. Especially, infinite explicit exact singular wave solutions are ob-
tained for the first time. It is worth noting that these singular wave solutions
will blow up on some lines or curves in the (x, t) plane. These facts reflect
the complexity of the structure of the solution of the gVC Burgers equation
with linear damping term. It also reflects the complexity of nonlinear wave
propagation in fluid from one aspect.
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1. Introduction

The well-known Burgers equation

ut + uux − νuxx = 0, (1.1)

as the simplest nonlinear model in fluid dynamics balances the effect of nonlinear
convection and the linear diffusion [5]. It was originally derived to describe the
propagation of nonlinear waves in dissipative media, where ν(> 0) is the kinematic
viscosity, and u(x, t) represents the fluid velocity field. It plays an important role in
explaining two fundamental effects characteristic of any turbulence: the nonlinear
redistribution of energy over the spectrum and the action of viscosity in small scales.
For the classical Burgers equation, a large number of literatures have discussed its
Painlevé integrability, Bäcklund transformation and other mathematical physics
properties [1, 4, 9, 10,24].

†The corresponding author.
Email address:jyzhengxr@163.com(X.Zheng),gzydshang@126.com(Y.Shang).

1School of Data Science, Guangzhou Huashang College, Guangzhou, Guang-
dong 511300, China

2School of Mathematics and Information Science, Guangzhou Uinversity,
Guangzhou, Guangdong 510006, China

∗The first author was supported by National Natural Science Foundation of
China (11871172).

http://dx.doi.org/10.12150/jnma.2024.133


134 Y. Shang & X. Zheng

In the real processes, the influence of damping is inevitable. It even plays an
important role in some problems. The Burgers equation with a linear damping
which describes the plane motion of a continuous medium for which the constitutive
relation for the stress contains a large linear term proportional to the strain, a small
term which is quadratic in the strain, and a small dissipative term proportional to
the strain-rate, has been studied for single hump conditions by singular perturbation
approach by Lardner and Arya [11]. The N-wave solutions for this equation have
been obtained by Sachdev and Joseph [18]. Vaganan and Kumaran [20] discussed
similarity solutions of the Burgers equation with linear damping and obtained a
trivial solution of the Burgers equation with linear damping by Lie’s group analysis
method. According to a relationship between the solutions of the damped Burgers
equation and the cylindrical Burgers equation obtained by Sachdev and Vaganan
[19], they also obtained a solution of the cylindrical Burgers equation. Peng and
Chen [15] obtained another trivial solution of the Burgers equation with linear
damping by using the direct method of Clarkson and Kruskal [3].

In the actual physical situations, the inhomogeneity of the medium, the rough-
ness or non smoothness of the fluid bottom, and the non-uniformity of the boundary
must also be considered. The variable coefficient partial differential equations often
provide more powerful and realistic model than their constant coefficient coun-
terparts in several physical situations. It seems more meaningful to consider the
variable coefficient Burgers equation with damping.

In 1991, Oliveri [14] considered a generalized Burgers’ equation containing an
arbitrary function of time

ut + uux − uxx + f(t)u = 0. (1.2)

He proved that equation (1.2) possesses the Painlevé property if and only if f(t) = 0,
i.e. it reduces to the classical Burgers equation. He also determined some classes
of functional forms for the function f(t) compatible with the existence of similarity
solutions of equation (1.2) by means of the Lie group techniques.

Qu Changzheng [17] derived a further generalized Eq.(1.1) with variable nonlin-
ear and dissipative coefficients, i.e.

ut + b(t)uux + a(t)uxx = 0. (1.3)

which can provide more useful models in many complicated physical situations,
such as the propagation of a long shock wave in an inhomogeneous two-layer shal-
low liquid [8]. The allowed transformations, symmetry classes, Painlevé property,
and Bäcklund transformation have been discussed in [8, 17] by the application of
the truncated Painlevé expansion and symbolic computation method. Hong found
kink-type solitonic solution under the conditions a(t), b(t) ∼ e−α1t with α1 ≪ 1. In
the past two decades, many authors have studied the exact linearization, Bäcklund
transformation, and similarity reduction of Burgers equation with variable coeffi-
cients by using various methods. For more information, we suggest readers to read
the literature [2, 6, 13,16,21,22] and references therein.

Wang, Zhang, Li et.al [23] considered the following generalized variable coeffi-
cient Burgers equation with linear damping term

ut + α(t)uux − β(t)uxx + γ(t)u = 0, (1.4)

which can describe the propagation of nonlinear waves in a liquid subject not only
to thermal conductivity but also to convective diffusion effects associated with the
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viscosity (damping effect), where u = u(x, t) represents temperature (or concen-
tration). α(t), β(t) and γ(t) are all arbitrary time-dependent functions. When
α(t) = 1, β(t) = σ,γ(t) = 0, Eq. (1.4) is known as the Burgers equation [24].
When α(t) = β(t) = 1, Eq. (1.4) becomes the form of [14]. When γ(t) = 0, Eq.
(1.4) gives the generalized Burgers equation [8]. When α(t) = β(t) = 1, γ(t) = σ,
Eq. (1.4) becomes the equation considered in [11,15,20]. The authors have got the
generalized Cole-Hopf transformation by using the simplified homogeneous balance
method and obtained some exact solutions by means of the given transformation.

As far as we know, the integrability of Eq. (1.4) is rarely studied at present.
Therefore, we hope to apply Painlevé analysis technique in this paper to investigate
whether Eq. (1.4) has the Painlevé property. We derive the constraint conditions
that variable coefficient functions α(t), β(t) and γ(t) satisfy when equation (1.4)
has the Painlevé property and an auto-Bäcklund transformation. By means of
the auto-Bäcklund transformation, many new explicit exact solutions of the gVC
Burgers equation with linear damping term (1.4) were immediately obtained.

This paper is organized as follows. In Section 2, Painlevé analysis and auto-
Bäcklund transformation of the Eq. (1.4) are derived. In Section 3, some new
explicit exact solutions were obtained in terms of different seed solution. In Section
4, several particular equations are discussed.

2. Painlevé analysis and auto-Bäcklund transforma-
tion

Painlevé property is one of the important properties of integrable nonlinear models.
A partial differential equation is said to possess the Painlevé if its solutions are single
valued in a neighbourhood of a non-characteristic movable singularity manifold. A
partial differential equation called Painlevé integrable if it possess the Painlevé test.
The Painlevé test proposed by Weiss, Tabor and Carnevale to prove the integrability
of partial differential equations [24].

According to standard WTC(Weiss-Tabor-Carnevale) method [24], for a non-
linear partial differential equation(NLPDE), we always assume that the solution of
NLPDE has the following form

u(x, t) = ϕp
∞∑
j=0

ujϕ
j , (2.1)

where ϕ = ϕ(x, t),uj = uj(x, t) are analytic functions of the independent variables
in a neighborhood of the singular manifold ϕ(x, t) = 0. Here p is a negative integer
and u0 ̸= 0.

Firstly, employ the leading order analysis. Let

u(x, t) ∼ u0(x, t)ϕ
p.

According to the balance between the highest order derivative term (β(t)uxx) and
the highest order nonlinear terms (α(t)uux), we get

p = −1, u0 =
−2β(t)

α(t)
ϕx,
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so that (2.1) becomes

u(x, t) =

∞∑
j=0

uj(x, t)ϕ
j−1(x, t). (2.2)

Substituting (2.2) into Eq. (1.4) with the help of Maple, and taking the coef-
ficient of lowest power term ϕj−3(x, t) to be zero, we can conclude the recursion
relation as follow

(j + 1)(j − 2)β(t)ϕ2
xuj = F (uj−1, uj−2, ..., u0, ϕx, ϕt, ...), (2.3)

where

F (uj−1, ..., u0, ϕx, ϕt, ...) =
α(t)

2

{ j−2∑
k=1

(ukuj−k−1)x + (j − 2)

j−1∑
k=1

ukuj−kϕx

}
− β(t)

{
2(j − 1)uj−1,xϕx + juj−1ϕxx + uj−2,xx

}
+ uj−2,t + (j − 2)uj−1ϕt + γ(t)uj−2.

From (2.3), it is easily noticed that the resonances occur at j = −1, 2. j = −1
corresponds to the arbitrariness of ϕ(x, t). When j = 2, the left-hand side of (2.3) is
zero. If the right-hand side is also equal to zero, Eq. (1.4) is said to be compatible,
corresponding to the arbitrariness of u2(x, t).

Making the coefficients of like powers of ϕ(x, t) to be zero, we can find that

j = 0 : −α(t)u2
0ϕx − 2β(t)u0ϕ

2
x = 0, (2.4)

j = 1 : α(t)(u0u0x − u1u0ϕx) + β(t)(2u0xϕx + u0ϕxx)− u0ϕt = 0, (2.5)

j = 2 : u0t + α(t)(u0u1x + u1u0x)− β(t)u0xx + γ(t)u0 = 0. (2.6)

Generally, we suppose that ϕx ̸= 0 and u0 ̸= 0. From (2.4) above, we get

u0 =
−2β(t)

α(t)
ϕx, (2.7)

plugging (2.7) into (2.5) yields

α(t)u1ϕx − β(t)ϕxx + ϕt = 0, (2.8)

c ombining with ϕx ̸= 0, so we have

u1 =
β(t)ϕxx − ϕt

α(t)ϕx
. (2.9)

Through (2.4) and (2.5) , we get expression of u0 and u1 given as (2.7) and (2.9).
But from (2.6), we can not get u2 uniquely. In other words, Eq. (2.3) is always
satisfied for arbitrary u2. As (2.6) involves determined quantities, we substitute
(2.7) and (2.9) into (2.6) in the case of ϕx ̸= 0, which yields

ϕx[−
2γ(t)β(t)

α(t)
− 2β

′
(t)

α(t)
+

2β(t)α
′
(t)

α(t)2
] = 0,
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where β
′
(t) = dβ(t)

dt and α
′
(t) = dα(t)

dt . Therefore, for the resonance term j = 2, we
conclude a constraint condition as follows

γ(t) =
d

dt
[ln(

α(t)

β(t)
)], (2.10)

which is the same relationship as that Wang, Zhang, Li et. al [23] got by using the
simplified homogeneous balance method.

In addition, our constraint condition (2.10) obtained here includes the compat-
ibility conditions obtained in other literatures(such as [24], [?], and [8]) as special
cases. From the above analysis, we obtain the following result:

Theorem 2.1. If the coefficients α(t), β(t), and γ(t) in Eq. (1.4) satisfy the
constraint condition (2.10) and ϕ(x, t) satisfies (2.8), then Eq. (1.4) possesses the
Painlevé property.

Next, we consider the case of j = 3.

j = 3 : u1t + u2ϕt + α(t)(u0u3ϕx + u1u2ϕx + u2u0x + u0u2x + u1u1x)

−β(t)(2u3ϕ
2
x + u2ϕxx + 2u2xϕx + u1xx) + γ(t)u1 = 0.

(2.11)

Clearly, (2.11) is equivalent to the following form

4β(t)u3ϕ
2
x =u1t + u2ϕt + α(t)(u1u2ϕx + u2u0x + u0u2x + u1u1x)

− β(t)(u2ϕxx + 2u2xϕx + u1xx) + γ(t)u1,

which shows that u3 is also an arbitrary function when u2 is an arbitrary function.
If u2 = 0, then u3 = 0, and we similarly prove that uj = 0 (j ≥ 2). By simplifying
(2.11), we get

u1t + α(t)u1u1x − β(t)u1xx + γ(t)u1 = 0, (2.12)

so u1 = u1(x, t) is a solution of Eq. (1.4). Thus we have the following conclusion:
Theorem 2.2. If the coefficient functions α(t), β(t), and γ(t) in Eq. (1.4) satisfy

the constraint condition (2.10), then there exists an auto-Bäcklund transformation

u(x, t) =
−2β(t)

α(t)

ϕx

ϕ
+ u1(x, t), (2.13)

where u1(x, t) is a solution of Eq. (1.4) and ϕ(x, t) satisfies a linear parabolic
equation (2.8) .

Remark 2.1. Obviously, u1 = 0 is a trivial solution of Eq.(1.4). When taking
seed solution as trivial solution u1 = 0, the auto-Bäcklund transformation (2.13)
degenerates the generalized Cole-Hopf transformation (15) in [23]. Our result is an
extension of the conclusion in [23].

3. Explicit exact solutions

Seeking the exact solutions of nonlinear partial differential equations is not only of
great theoretical significance in mathematics, but also of great application value in
physics. For nonlinear partial differential equations with constant coefficients, there
are many methods for seeking explicit exact solutions, such as the plane dynamic
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system method [?,?], Hirota bilinear method [7, 25], etc. In [7], Gaillard construct
rational solutions to the KdV equation by particular polynomials. In this section,
we will construct infinite explicit exact singular wave solutions to the gVC Burgers
equation with the linear damping term.

According to auto-Bäcklund transformation (2.13), we can find out various kinds
of solutions for Eq. (1.4) by choosing different ϕ(x, t) and u1(x, t). In particular,
choosing u1 = 0 as a “seed” solution, from (2.8) in case of ϕx ̸= 0, we get

ϕt − β(t)ϕxx = 0. (3.1)

Letting τ =
∫ t

β(ξ)dξ, Eq. (3.1) becomes

ϕτ − ϕxx = 0. (3.2)

According to the solutions of the linear heat conduction equation (3.2), we get the
following explicit exact solutions of equation (1.4).

Case 1. Taking ϕ(x, τ) = 1 + exp(kx+ k2τ + c), we obtain a solitary wave-like
solution

u(x, t) =
−kβ(t)

α(t)
[1 + tanh

k

2
(x+ k

∫ t

β(τ)dτ + C)]. (3.3)

Remark 3.1. The solution (3.3) is a smooth global solution. For specific α(t), β(t),
this solution has the waveform profile of kink-typed solitary wave.

Case 2. Taking ϕ(x, τ) = A + B exp(−λ2τ)cos(λx), we obtain explicit exact
solutions of Eq. (1.4) as follows

u(x, t) =
2β(t)

α(t)

λB exp(−λ2
∫ t

β(τ)dτ)sin(λx)

A+B exp(−λ2
∫ t

β(τ)dτ)cos(λx)
. (3.4)

Case 3. Taking ϕ(x, τ) = A+B exp(−λ2τ)sin(λx), we obtain the explicit exact
solutions of Eq. (1.4) given as

u(x, t) =
−2β(t)

α(t)

λB exp(−λ2
∫ t

β(τ)dτ)cos(λx)

A+B exp(−λ2
∫ t

β(τ)dτ)sin(λx)
. (3.5)

Remark 3.2. It is worth pointing out that solutions (3.4) and (3.5) are all periodic
functions with respect to the independent variable x. And these solutions asymp-
totically decay to zero when t tend to zero +∞ (when β(t) > 0). It must also be
pointed out that these solutions are all blow-up solutions, i.e. they will blow up on
some curves in the (x, t) plane.

Case 4. Taking ϕ(x, τ) = ax+ b, a, and b are two arbitrary constants that are
not all zero, we obtain the explicit exact solution of rational type

u(x, t) =
−2β(t)

α(t)

a

ax+ b
. (3.6)

Remark 3.3. The solution of rational type (3.6) is a product form variable sep-
aration solution. This solution will blow up on the line ax + b = 0 in the (x, t)
plane.
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Case 5. Taking ϕ(x, τ) = a(x2 + 2τ) + bx + c, a, b, and c are three arbitrary
constants that are not all zero, we obtain the exact rational fraction solutions

u(x, t) =
−2β(t)

α(t)

2ax+ b

a(x2 + 2
∫ t

β(τ)dτ) + bx+ c
. (3.7)

Remark 3.4. The solution of rational type (3.7) is also a blow-up solution. It will

blow up on the curve a(x2 + 2
∫ t

β(τ)dτ) + bx+ c = 0 in the (x, t) plane.

Case 6. Taking ϕ(x, τ) = ax3 + bx2 + cx + d + (6ax + 2b)τ , a, b, c, and d are
four arbitrary constants that are not all zero,we obtain a solution

u(x, t) =
−2β(t)

α(t)

3ax2 + 2bx+ c+ 6a
∫ t

β(τ)dτ

ax3 + bx2 + cx+ d+ (6ax+ 2b)
∫ t

β(τ)dτ
. (3.8)

Remark 3.5. The solution of rational type (3.9) is also a blow-up solution. It will

blow up on the curve ax3 + bx2 + cx + d + (6ax + 2b)
∫ t

β(τ)dτ = 0 in the (x, t)
plane.

Case 7. In general, we can suppose that Eq. (3.2) has a solution in the following
form

ϕ(x, τ) = Σk
i=0Pi(x)τ

i, k ≥ 1, (3.9)

where Pi(x) is the polynomial of its variable x. By solving the following ordinary
differential equations 

P ′′
0 (x) + P1(x) = 0,

P ′′
1 (x) + 2P2(x) = 0,

.

.

.

P ′′
k−1(x) + kPk(x) = 0,

P ′′
k (x) = 0,

(3.10)

Pi(x) can be determined. By using the auto-Bäcklund transformation (2.13), we
can obtain infinite explicit exact solutions of rational type for Eq. (1.4).

Since Eq. (3.2) is a homogeneous linear equation, any linear combination of
ϕ(x, τ) functions obtained above is also its solution. By using the Bäcklund trans-
formation , we can obtain more abundant new explicit exact solutions of Eq. (1.4).
These results above greatly enrich those solutions obtained in [23]. Except for the
solution (3.3), all other solutions are singular solutions that will blow up on a curve
in the (x, t) plane.

When taking the “seed” solution u1 ̸= 0 in the auto-Bäcklund transformation
(2.13), we can also find more new explicit exact solutions. A detailed discussion
will be given in another article.
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4. Conclusion

In this paper, a generalized variable coefficients Burgers equation with linear damp-
ing term has been discussed. The WTC method is used to investigate whether the
equation has the Painlevé property. It turns out that this equation has the Painlevé
property as long as the coefficient functions satisfy a constraint condition (2.10).
By applying Painlevé truncation expansion, the auto-Bäcklund transformation has
been obtained. According to the transformation obtained, a large number of new
solutions have been got through choosing different ϕ(x, t). Especially, The infi-
nite explicit exact singular wave solutions of the gVC Burgers equation with linear
damping term are obtained for the first time. It is worth noting that these singular
wave solutions of the gVC Burgers equation with linear damping term will blow up
on some lines or curves in the (x, t) plane. These facts reflect the complexity of the
structure of the solution of the gVC Burgers equation with linear damping term. It
also reflects the complexity of fluid from one aspect.
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