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Existence of Three Weak Solutions for a Class of
Quasi-Linear Elliptic Operators with a Mixed
Boundary Value Problem Containing
p(+)-Laplacian in a Variable Exponent Sobolev
Space

Junichi Aramaki®*

Abstract In this paper, we consider a mixed boundary value problem to
a class of nonlinear operators containing p(-)-Laplacian. More precisely, we
are concerned with the problem with the Dirichlet condition on a part of
the boundary and the Steklov boundary condition on an another part of the
boundary. We show the existence of at least three weak solutions under some
hypotheses on given functions and the values of parameters.
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1. Introduction

In this paper, we consider the following nonlinear problem

—div [Sy(z, [Vu(2)?) Vu(z)] = Afo(z, u(x)) + pfi(z, u(z)) in Q,
u(z) =0 onI'y, (1.1)
Si(x, |Vu(z)|?) 4 (z) = Ago(z, u(x)) + pg (2, u(z)) on I',

where Q C R? (d > 2) is a bounded domain with a Lipschitz-continuous bound-
ary I', T'; and T’y are disjoint open subsets of I such that Ty UTy = T, and n
denotes the unit, outer and normal vector to I'. Thus, we impose the mixed bound-
ary conditions, that is, the Dirichlet condition on I'; and the Steklov condition
on I's. The given data f; : @ xR — Rand ¢g; : I's xR — R for ¢ = 0,1
are Carathéodory functions, and A, u are parameters. The function S(z,t) is a
Carathéodory function on € x [0, 00) satisfying some structure conditions associ-
ated with an anisotropic exponent function p(z) and S; = 95/0t. Then, the func-
tion div [Sy(z, |Vu(z)|?)Vu(x)] is a more general operator than the p(-)-Laplacian
Apyu(z) = div[|Vu(z)[P®~2Vu(z)], where p(z) > 1. This generality brings
about difficulties and requires more conditions.
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The study of such a type of differential equations with p(-)-growth conditions
has been a very interesting topic recently. Studying such a problem stimulated its
application in mathematical physics, in particular, in elastic mechanics (Zhikov [32])
and electrorheological fluids (Diening [12], Halsey [19], Mih&ilescu and Radulescu
[24] as well as Ruzicka [26]).

Over the last two decades, there have been many articles on the existence of
weak solutions for the Dirichlet boundary condition for the p(-)-Laplacian type,
that is,

—div [|Vu[P®)2Vu] = f(z,u) in Q,

(1.2)
u(z) =0 on I

See, Fan [14], Ji [21,22], Fan and Zhang [16], Avci [7] and Yiicedag [28], for example.
On the other hand, for the Steklov boundary condition, that is,

—div [|Vu[P®)=2Vuy] = f(z,u) in Q,

(1.3)
|Vup®) =25 — onT.
See, Fan and Ji [15], Wei and Chen [27], Yiicedag [29], Allaoui et al., [1], Ayoujil [§]
and Deng [11], for example.

However, since we can find only a few papers on the problem with the mixed
boundary value condition in variable exponent Sobolev space as in (1.1) (cf. Ara-
maki [4-6]), we are convinced of the reason for existence of this paper.

Throughout this paper, we assume that I'y and I's are disjoint open subsets of
I" such that

TUly =T and I'; # 0. (1.4)

When p(z) = p = const., Zeidler [30] considered the following mixed boundary
value problem

divy = f in Q,
u=gqg on I'y, (1.5)
j-m=h only,

where j is the current density, and f(z),g(x) and h(x) are given functions. If j is
of the form
j = —a(|Vu) v, (1.6)

problem (1.5) corresponds to many physical problems, for example, hydrodynamics,
gas dynamics, electrostatics, heat conduction, elasticity and plasticity.
If o = 1, then problem (1.5) becomes

—Au=f in Q,
u=g on I'y, (1.7)
—g—;i =h onls.

From the mathematical point of view, this is a mixed boundary value problem for

the Poisson equation. If a(|Vu|?) = |Vu|P~2, problem (1.5) corresponds to the p-
Laplacian equation. Definitely, if I's = @) (resp. I'; = (), then system (1.5) becomes
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the first (resp. second) boundary value problem respectively. In order to have an
intuitive understanding, let d = 3 and regard u(z) as the temperature of a body
Q at the point . Then, j in (1.6) is the current density vector of stationary heat
flow in Q, f describes outer heat source, and the boundary conditions means the
prescription of the temperature on I'y and heat flow through I's. System (1.5) rep-
resents a constitutive law which depends on the specific properties of the material.
If « is a positive constant, « represents the heat conductivity, and (1.5) is called
heat conductivity.

Under some assumptions on f;, ¢; (i = 0,1) and parameters A and g in (1.1),
we show the existence of at least three weak solutions using at least three critical
points theorem of Ricceri [25]. Here, functions f; and g; represent perturbation
terms. We make efforts to be self-contained to this paper.

The paper is organized as follows. Section 2 consists of three subsections. In Sub-
section 2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces. In
Subsection 2.2, we introduce a Carathéodory function S(z,t) satisfying the struc-
ture conditions and some properties. In Subsection 2.3, we consider the Nemyckii
operator. Section 3 is devoted to the setting of problem (1.1) rigorously and giving
a main theorem (Theorem 3.1) on the existence of at least three weak solutions.
The proof of Theorem 3.1 and its corollary (Corollary 4.1) are given in Section 4.

2. Preliminaries

Let Q be a bounded domain in R? (d > 2) with a Lipschitz-continuous (abbreviated
as C%1) boundary I'. Moreover, we assume that I satisfies (1.4).

Throughout this paper, we only consider vector spaces of real valued functions
over R. For any space B, we denote B¢ by the boldface character B. Hereafter,
we use this character to denote vectors and vector-valued functions, and we denote
the standard inner product of vectors @ = (ai,...,a4) and b = (by,...,bq) in RY
by a-b= Zle a;b; and |a| = (a-a)'/?. Furthermore, we denote the dual space of
B by B* and the duality bracket by (-,-)p+ 5.

2.1. Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue-
Sobolev spaces. See Diening et al., [13], [16], Kovacik and Rdcosnik [23] and the
references therein for more details. Throughout this paper, let 2 be a bounded
domain in R? with a C%!'-boundary T', and Q is locally on the same side of I'.
Define P(Q2) = {p : Q@ — [1,0); p is a measurable function}. Define

pT = esssupp(x) and p~ = essinf p(x). (2.1)
z€Q €

For any measurable function u on {2, a modular p,.) = p,(.),q is defined by

oo (@) = [ fula) e 22)
The variable exponent Lebesgue space is defined by

LPO(Q) = {u; u : Q — R is a measurable function satisfying pp(y(u) < oo} (2.3)
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equipped with the Luxemburg norm

[ull Lre) (@) = inf {)\ > 0; pp( (%) < 1} . (2.4)
Then, Lp(')(Q) is a Banach space. We also define, for any integer m > 0,
WmPO(Q) = {u e LPO(Q); 8% € LPO(Q) for |a| < m}, (2.5)
where a = (aq,...,04) is a multi-index, |o| = Zle a;, 0% = 0" --- 09" and
0; = 0/0x;, endowed with the norm
ullwm.pe) () = Z 10%ull Lo (- (2.6)
|| <m

Definitely, WoP()(Q) = LP()(Q). Define
W(;n"p(')(Q) = the closure of the set of W™P)(Q)-functions

with compact supports in €.
The following three propositions are well-known (see Fan et al., [17], [27], Fan
and Zhao [18], Zhao et al., [28,31]).

Proposition 2.1. Let p € P(Q) and let u,u, € LP)(Q) (n = 1,2,...). Then, we
have the following properties.
(i) Hu||Lp<.)(Q) <l(=1,>1) = ppy(u) <1(=1,>1).

.. - +
i) Jull o ) > 1= [l ) < 2oy (0) < [l -

(
ees + —
(i) flullprero) < 1= ||u||’£p(,)(m < pp(y(u) < ”u”i')(‘)(ﬂ)'

(iv) limy, o ||t — u||Lp(.)(Q) = 0 <= limy, o0 pp() (Un — u) = 0.
(V) lunllLecr @) — 00 as n— 00 <= pp(y(un) — 00 asn — oo.

The following proposition is a generalized Holder inequality.

Proposition 2.2. Let p € P (), where
P.(Q)={peP(Q);1<p <ph<ool (2.7

(i) For any € > 0, there exists a constant C(c) > 0 such that

/Q u(z)v(x)dx

< eppiy(u) + C(e)py iy (v) for all u € LPO(Q) and v € LV O (Q).

(2.8)
(ii) For any u € LPO)(Q) and v € LP')(Q), we have
1 1
. [u(z)v(z)|dr < = + - wllLror @ llvll ey ) < 2lull ey @ 1ol oo (0)-
(2.9)
Here and from now on, p'(+) is the conjugate exponent of p(-), that is, ﬁ +
1
7@
For p € P(Q), define
@)t p(x) < d
p(x) = P ple) < d. (2.10)

00 if p(z) > d.
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Proposition 2.3. Let Q be a bounded domain with C%'-boundary and let p €
P+(Q) and m > 0 be an integer. Then, we have the following.

(i) The spaces LPC)(Q) and W™PC)(Q) are separable, reflexive and uniformly
convex Banach spaces.

(i) If q(-) € P(Q) and satisfies q(z) < p(z) for all x € Q, then W™P)(Q) —
W40)(Q), where < means that the embedding is continuous.

(iii) If q(x) € P+(Q) satisfies q(z) < p*(x) for all x € Q, then the embedding
Whrl)(Q) — LIO(Q) is compact.

We say that p € P(Q) belongs to P°2(€), if p has the log-Hélder continuity in
Q. That is, p : Q — R satisfies that there exists a constant Clog(p) > 0 such that

Clog(p)
e+ 1/lz —yl)

Ip(x) — p(y)| < Toa( for all z,y € Q. (2.11)

We also write ”Pfg(Q) ={peP(Q);1<p <pt < oo}

Proposition 2.4. Ifp € Pfg(ﬂ) and m > 0 is an integer, then D(Q) := C§°(Q)
is dense in Wgn’p(')(Q).

For the proof, see [13, Corollary 11.2.4].

Next, we consider the trace. Let 2 be a domain of R? with a C%!-boundary
I and p € P4(Q). Since W) (Q) VVli)Cl(Q), the trace y(u) = u|F to I of any

function u in WP()(Q) is well defined as a function in L (T'). We define

loc
[Te(W PO () = (T O) (1)
= {f; f is the trace to ' of a function F € WHPO(Q)}  (2.12)

equipped with the norm
£l rewro0y @y = [ Fllwise ) F € WHPO(Q) satisfying F|.= f}  (2.13)

for f € (TrWP(O))(T'), where the infimum can be achieved. Then, (TrW'?())(T) is
a Banach space. More precisely, see [13, Chapter 12]. Later, we also write F | =49
by F'= g on I'. Moreover, we denote

(TeW'PONTy) = {f|,. s f € (eWPO)D)} for i = 1,2 (2.14)
equipped with the norm

191l (rewr o0y sy = ELFll ooy £ € (TeWHPO)(T) satisfying flp= g},
(2.15)
where the infimum also can be achieved. Therefore, for any g € (TrWhP())(Ty),
there exists F € W1P()(Q) such that F|Fi: gand || Fly1.e0)0) = 9]l rewro0) ) -
Let ¢ € P(T) := {q € P(I');q~ > 1} and denote the surface measure on I'
induced from the Lebesgue measure dz on 2 by do. We define

L‘I(')(I’) = {u; u: ' — R is a measurable function with respect to do satisfying

/ lu(z)|9® do < oo},
r
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and the norm is defined by

()
||uHL‘?(')(F) = lnf {)\ > 0,/ @ dU S 1} y (216)
r
and we also define a modular on L9)(T") by
Py r(u) = /F Ju(2)| " do. (2.17)

Proposition 2.5. We have the following properties.
) - +
) [l ooy = 1= Jull e oy < pacr.r(@) < lul%hcs -
.o + -
(i) lull ooy < 1= [0l 2es oy < Pt () < JllE oy

Proposition 2.6. Let Q be a bounded domain with a C%'-boundary T satisfying
(1.4) and let p € Pfg(Q). If f € (TrWHPOY(T), then f € LPO(T) and there exists
a constant C' > 0 such that

[flero @y < Cllleewreoy (- (2.18)
In particular, if f € (TeW POV, then f € LPO(Ty) and
£ leror 0y < ClFllerew ey (0)- (2.19)

For p € P4(Q), define

EDp@) i (7)< d
Pley=] T < (2.20)
00 if p(z) > d.

Proposition 2.7. Let p € P1(Q). Then, if q(z) € P4 (Q) satisfies q(x) < p°(x)
for all x € T, the trace mapping WP (Q) — LICN(T) is well-defined, compact and
continuous. In particular, the trace mapping WP0)(Q) — LPC)(T) is compact and
continuous, and there exists a constant C' > 0 such that

ull ooy < Cllullwec ) for w € WHPO(Q). (2.21)
Define a basic space of this paper by
X ={vew O (Q);v=0o0nT}. (2.22)

Then, it is clear to see that X is a closed subspace of W1»(") (Q), so X is a reflexive,
separable and uniformly convex Banach space. We show the following Poincaré
type inequality (cf. Ciarlet and Dinca [10]).

Lemma 2.1. Let p € ’Plfg(Q). Then, there exists a constant C = C(Q,d,p) > 0
such that
ull Loy (@) < C||Vu||Lp<.)(Q) for allu € X. (2.23)

In particular, [|[Vullpee) ) is equivalent to [[ully1.00)(q) foru € X.
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Proof. If the conclusion is false, then there exists a sequence {u,} C X such that
[unllLro @) = 1 and 1 > nf|Vuy|[gee) (). Since [[unlzpc) @) = 1 and Vu, — 0
strongly in L) (), {u,} is bounded in W1»()(Q). Therefore, by the fact that X
is a reflexive Banach space, there exists a subsequence {u, } of {u,} and v € X
such that wu,, — u weakly in WP()(Q) and in LPO)(Q). Thus, u, — u in D'(Q)
(the set of all distributions in Q), so Vu,, — Vu in D'(Q). Since Vu,, — 0 in
LPY)(Q), Vu = 0 in D'(Q2). Therefore, u = const. (cf. Boyer and Fabrie [9, Lemma
I1. 2.44])). Asu = 0on Ty (# 0), we have u = 0. Thus, u,» — 0 weakly in W20)(Q).
Since p(x) < p*(z) for all x € Q, the embedding mapping W) (Q) < LPO)(Q) is
compact, so u, — 0 strongly in LP()(Q). This contradicts wn [l Loy ) = 1. O
Thus, we can define the norm on X, so that

[vllx = [Vl gre) () for v e X, (2.24)

which is equivalent to [|v[|y1.00)(q)-

2.2. A Carathéodory function

Let p € Pfg(ﬁ) be fixed. Let S(x,t) be a Carathéodory function on 2 x [0, c0) and
assume that for a.e. z € Q, S(z,t) € C%((0,00)) N C([0,0)) satisfies the following
structure conditions: there exist positive constants 0 < s, < s* < oo such that for
a.e. x € (.

S(x,0) = 0 and s,tP@=2/2 < G, (1) < s*tP@=2/2 for t > 0. (2.25a)

5, tP@=2/2 < G, (2. 1) + 2tSy (2, 1) < s*tP@=2/2 for ¢ > 0. (2.25Db)
Se(x,t) < 0 when 1 < p(z) < 2
and Sy (z,t) > 0 when p(z) > 2 for t > 0, (2.25¢)

where S; = 95/0t and Sy, = 9*2S/0t2. We note that from (2.25a), we have

2 . 2 .
2 5 tP@)/2 < S(z,t) < 2 s P®)/2 for + > 0. (2.26)
p(x) p(x)

We introduce two examples.

Example 2.1. (i) When S(z,t) = V(m)ﬁtp(w)m, where v is a measurable function

in Q satisfying 0 < v, < v(x) < v* < oo for a.e. in €, the function S(z,t) satisfies
(2.25a)-(2.25¢). We see that (1.1) is an extension of the problem (1.2) or (1.3).
(ii) As an another example, we can take

ae Yt +q fort >0,
o(1) = (227)
a for t =0,

where a > 0 is a constant. Then, we can see that S(z,t) = V(x)g(t)ﬁt”(r)“
satisfies (2.25a)-(2.25¢), if p(z) > 2 for all x € Q, (cf. Aramaki [2]).

We have the following estimate of S;.

Lemma 2.2. Under hypotheses (2.25a)-(2.25¢), there exists a constant ¢ > 0 de-
pending only on s, and pt such that for any a,b € R?,
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(St(x,lal*)a — Si(x, [b]*)b) - (a — b)
cla — b|P® when p(zx) > 2,
c(lal + [B))P@ 2@ — b|> when 1 < p(z) < 2.

(2.28)

For the proof, see Aramaki [3, Lemma 3.6].

Lemma 2.3. Under hypotheses (2.25a)-(2.25b), the function T(z,t) = 1S(z,t%)
defined in Q X [0,00) is uniformly convexr with respect to t € [0,00), that is, for any
€ > 0, there exists a constant § = 6(g) > 0 independent of x such that

) <q _6)T(Jc,t) —&Q—T(Jj,s)

for a.e. x € Q and allt,s > 0. Moreover, the function T(x,t) is strictly monotoni-
cally increasing and strictly convex with respect to t € [0, 00).

t+s

[t — s| < emax{t,s} or T(m,

For the proof, see [4, Lemma 2.8].
Lemma 2.3 is extended as follows.

Proposition 2.8. For any eo > 0, there exists a constant do = d2(e2) > 0 indepen-
dent of x such that

la — b|] < eomax{|al,|b|]} or T<337

a;rbD <@ _52)T($7 Ial);rT(% L))

for any a,b € R? and a.e. x € Q.

Proof. Fix e, so that 0 < g2 < 4/16/3 and put € = €5/2. Choose § = d(¢) > 0
as in Lemma 2.3. Let |a — b] > e max{|al, |b|}. If

b
lal = ol > emaxal. ol (> -2 (229)

then it follows from Lemma 2.3 that the conclusion holds with do = §. Thus, we
assume ||la| — |b|| < e max{]al,|b|}. Then,

la—b] > ey max{lal, [b]} = 2 max{|al, [B} > 2[la] — ]| . (2.30)

Therefore, we have
2

a+b2_@ @_ a—-b
2 | 2 2 2
a a—
_laP B _3|a=bf 1a b
2 2 4| 2 4
<@+@_§ la\ b
-2 2
lal + |b] §a—
B 2 4] 2
Since |a — b| > 3 max{|al, |b|} > 52"1'2&, we have
a+bl 3¢2\ [lal+ b \?
< (1-—222) (=20 .
2 (1 16 2 (2:31)
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Let 0 = 1 — /1 —3¢3/16 > 0. Since T'(x,t) is monotonically increasing, convex
with respect to ¢ and T'(z,0) = 0, we see

T (m a;bD <T (x,(l _52)W|42r|b>
< (1=6)T (xWHb>

2

< (1 ) Tlel + TG,

Remark 2.1. This proposition is a slight extension of [13, Lemma 2.4.7].

2.3. The Nemytskii operator

In this subsection, we consider the Nemytskii operator. Let {2 be a open subset of
R? and let f:Q x R™ — R be a function, that is,

.f(x7p) = (f1($7p17~-~7pm)7- "7fl($7p17"' apm)), T e Qap: (p17"',pm) S R™.

Assume the following (H.1) and (H.2).

(H.1) f(z,p) is a Carathéodory function defined in 2 x R™, that is, for any
p € R™, a function = — f(x,p) is measurable in  and for a.e. = € 2, a function
p+— f(x,p) is continuous in R™.

(H.2) The growth condition: for every j =1,...,[, there exist a constant b; > 0
and functions p;,q; € P8(Q) such that 1 < p; < pj < oo for i = 1,...,m,
1<g; < qj' < oo and a non-negative function a; € L% () such that

/(@ p)| < aj(x) +0; Y |pifP 0, (2.32)

i=1

For any function u(z) = (ui(x),...,um(x)), define the Nemytskii operator F'
by
F(u)(z) = f(z,u(z)) for z € Q. (2.33)

Then, we have the following proposition.

Proposition 2.9. Under hypotheses (H.1) and (H.2), the Nemytskii operator

m 1
F: [0 — [ 29 @) (2.34)
i=1 j=1
1s continuous and bounded with
qu(.)(Fju) < Cj (qu(,)(aj) + prl()(ul)> fO’I“j =1,..., l. (235)
i=1

Proof. It suffices to show the case [ = 1. For the brevity of notations, we write
qg=qi,a=a,b=b,f=fand F=F.

First, we show the continuity of F. Let u(™ — w in []", LP()(Q). By the
convergent principle (cf. [5, Appendix]), there exist a subsequence {u("/)} of {u(™}
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and g; € LP:¢ )( ) (i = 1,...,m) such that u(" )(z) — ui(z) as 0’ — oo for a.e.
wEQand|u- ()| ()foralln ae. x € Qandi=1,...,m. We show that
|[Fu™) — Fu| L)) — 0 as n’ — co. By Proposition 2.1 (1v) it suffices to show

pq(,)(Fu(”,) —Fu) = /Q |f(x,u(”')(x)) — f(z, u(@)|"®dz — 0 as n’ — co. (2.36)

Since f is a Carathéodory function and u(")(z) — u(z) a.e. z € Q as n’ — oo, we

see
|flz, u™) (2) = fz,u(@))]?®) = 0 for ae. z € Qasn' — .

Moreover, from (H.2), we have

1f (2, u™) (2)) = f(, u(z))]1®
< G ) (@)1 4 o )7

< <a(m)q($) + bz |u§n,’)(x) pi(x) + bz |uz(x) pi(x)>

§C2<a e +ng p1<x>+b2|u plz>>

for some constants C, C7 and Cy. The last term is an integrable function in €2 which
is independent of n’. By the Lebesgue dominated convergent theorem, (2.36) holds.
By the convergent principle (cf. [30, Proposition 10.13 (i)], for the full sequence
{u(™}, we have p,.)(Ful™ — Fu) — 0, as n — oo.

Next, we consider the estimate (2.35) with [ =1,

Pt (Fu) = / ()"

q(x)
/ ( )+ bz s (z pz(m/q(»L)) da
SC’3/< +Z|U pl(x)
Q
=Cs <pq(.)(a) + pri(')(“i)> )
=1

where C is a constant. Thus, the estimate (2.35) with [ = 1 holds. O

3. Setting of the problem and the main theorem

In this section, we consider system (1.1). From now on, we suppose the following
conditions. For ¢ =0, 1,
(fi) a Carathéodory function f; : Q x R — R satisfies

|fi(z,t)] < Chi+ Coylt @(@)=1 for ez € Qand all ¢ € R, (3.1)

where C;; and C;; are non-negative constants and «; € Plog( ) satisfies that
ai(x) < p*(x) for all z € Q.
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(gi) a Carathéodory function g; : 'y x R — R satisfies

|gi(z,t)| < D1, + Dot Bil@)=1 for a.e x € 'y and all ¢ € R, (3.2)

where Dy ; and D, ; are non-negative constants and j3; € Pfg (T'y) satisfies B;(z) <
p?(x) for all x € Ty.
We introduce the notion of weak solutions for problem (1.1).

Definition 3.1. We say u € X defined by (2.22) is a weak solution of (1.1), if
/QSAxJVu@H%VW@Q~VU@ﬁh
-\ ( | ot oty + | go(%U(x))v(ar)da) (33)
+u(Afmnm@w@mx+z;m@w@»m@m01mauveX

We want to solve problem (1.1). For this purpose, we consider the functional on
X defined by

I(u) = ®(u) — AJ(u) — pK(u) for u € X, (3.4)
where
MM=%A&%WM@WM, (3.5)
ﬂ@:/ﬂ@wmmm- Golx, u(x))do, (3.6)
Q I
KM:/H@MWM+ G (a, ul))do, (3.7)
Q Iy
and for every i =0, 1,
Fi(z,t) = /0 fi(z, s)ds for (z,t) € Q@ x R, (3.8)
Gi(z,t) = /Ot gi(x, s)ds for (x,t) € Ty x R. (3.9

We are in a position to state the main theorem.

Theorem 3.1. Let Q2 be a bounded domain of R? (d > 2) with a C%'-boundary T

satisfying (1.4) and p € Pfg(ﬁ) verifying

+ - _ —
pt—p < Z% ifp~ < d. (3.10)

Assume that the functions fo and go satisfy (fo) and (go). Moreover, suppose

max 4 lim sup €53 SUpyen Fo (@, 1) lim sup €58 Supyeq Fo (@, 1) <0 (3.11)
t—0 |t‘p+ ’ [t]—o0 |t|p* -

max < lim sup 58 Supyer, Go(a, ) lim sup €58 SWpser, Go(®, 1) <0 (3.12)
t—0 |t|pJr ’ [t]—o0 |t|p* a
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and

sup (/ﬂ Fo(x,u(x))dx + s Go(x,u(x))da> > 0. (3.13)

ueX
Set

fQ Fo(x,u(x) d:chfF Go ;u(z))do

/QFO(%u(x))dac +

;u € X with

Go(z,u(z))do > 0} . (3.14)
)

Then, for each compact interval [a,b] C (6, 00), there exists r > 0 with the following
property: for every A € [a,b] and any functions fi and g1 satisfying (f1) and (g1),
there exists 0 > 0 such that for each p € [0, 9], problem (1.1) has at least three weak
solutions whose norms are less than 7.

Remark 3.1. In Ji [20], the author considered the case I'y = (), and insisted that
there exists ¢ € R such that p™ < ¢ < p*(z) for all z € Q. However, in general, this
does not hold without the hypothesis p™ — p~ < pTp~/d.

Before the proof of Theorem 3.1, we consult the properties of the functionals ®,
J and K defined by (3.5), (3.6) and (3.7) respectively in the following subsections.

3.1. The property of ¢

Proposition 3.1. The functional ® on X defined by (3.5) is a positive and con-
tinuous modular, and uniformly convex, that is, for any € > 0, there exists 6 > 0
such that

@(“;1))9@(“);‘1’(”) or @(“;”>§(1_5)W (3.15)

for all u,v € X.

Proof. First, we note that u, — u» in X means that Vu,, — Vu in Lp(')(Q),
and that the function S(z,t) is a Carathéodory function on € x [0,00). Since
S(z,|Vu(z)?) < i%|Vu(m)\p(’3), by (2.26), the Nemytskii operator

F(Vu)(x) = T(a,|Vu(o)]) = 2 S(a, [Vu(@)P) (3.16)

is continuous from L") (Q) to L1(Q). Thus, if u, — u in X, then

/ T(a, |V (2)|dz — / Tz, |[Vu(@)))dz as n — oo. (3.17)
Q Q

Therefore, ® is continuous on X. Since v = 0 in X, if and only if Vu = 0 from the
Poincaré type inequality Lemma 2.1, it is easy to see that ® is a positive modular
(cf. [13, Definition 2.1.1]). We derive that & is uniformly convex. Let 0 < ¢ < 1.
Put g2 = ¢/2 and choose d2 > 0 as in Proposition 2.8. Assume

o (“;”) >e®(”);rq)(”). (3.18)
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) (“;”) < (1 - 525) o) + 2(v) (3.19)

We show

2 2
Put E = {z € O |Vu(z) — Vo(z)| > § max{|Vu(z)|,|Vv(z)|} }, for aez € Q\ E,

[Vu(z) — Vo(z)| < e max{|Vu(z)], [Vu(@)|} < ea([Vu(z)| +[Vo(z)]).  (3.20)

Then, we decompose ® as ®(u) = Pp(u) + Po\g(u), where

() = /E Tz, |Vu(z)|)dz and B 5 (u) = /Q v @2

Since T'(z,t) is a monotonically increasing and convex function on Q x [0, c0) with
respect to t-variable and T'(x,0) = 0, we have
v -V
CR.ZC

u—v
e ()= 7 (o2

/ T (%EQVU(OC) + IVv(w)I) d
Q\E

IN

2

. /Q\ET(% [Vu(z)] ; IVv(x)|> da

T(z, |Vu(z)]) + T(x, [Vo(x)])
€9 /Q\E B dx

e Po\p(u) + Povp(v)
2 2
< e ®(u) + <I>(v).

-2 2

IN

IN

From this inequality and (3.18), we have

By (u;v) :@(u;v> P, (u—v)

2 2
e ®(u) + 2(v)
=2 . . (3.22)
On the other hand, for a.e. x € E, since
|[Vu(z) — Vou(z)| > g2 max{|Vu(x)|, | Vou(z)|}, (3.23)
it follows from Proposition 2.8 that
T <x7 Vu(zx) —2&— Vou(z) ) <(- 52)T(x, [Vu(x)]) —;—T(w, |Vv(x)|) (3.24)
Hence,
By (”;”’) _ / T <x Vulz) + Volz) ; Vo(z) ) dz < (1 5, 22 + 25(v) ; Pe() (595
E
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Since the function R? 3 a +— T(z,|a|) is convex, we see

Therefore, we have
Po\e(u) + Poye(v) u+wv
2 ~ Po\m ( 2 )
_ T(z, |Vu(@)]) + T(z,[Vo(@)]) (| Vulz)+ Vo(z) o
f (P s (g
Therefore, from (3.25) and (3.22), we have
D(u) + @(v) u+v Dp(u) + Pg(v) u+wv
2_¢(2):E 2E _(I)E(2>
+‘I’Q\E(U) ‘QF Pop(v) o (U -QF U>
- Pp(u) + Pp(v) . (u + v>
- 2 2
Pp(u) + Pp(v) Pp(u) + Pp(v)
> PEW LD (g gy RE X 20
_s Dp(u) + Pg(v)
e
s, [ LIV LT 9k,
2 | 5
262/ET<96’ Vu(a:);Vv(m))dI
= 52<I>E(u — U)
< dae ©(z) + @(v)
-2 2 '
This means that (3.19) holds. O

Since ® is a modular on X, the modular space and the Luxembourg norm
associated with ® are defined by

Xo = {u € X; lim @(ru) = 0} (3.28)
and u
|lu||o 1nf{T>0,<I>(T) < 1} for u € Xg. (3.29)
Clearly, we see X¢ = X. By (2.26), we have
p(:E) 1 2
/ s |Vule) T < 0 (9) - 7/ s (2| Y427 4y
o p(z) T T 2 Ja
* p(z)
< / | Vu@) | 4 (3.30)
o p(2) T
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Hence,
() * p(z)

Sx (z) P u s Vu(z)

— <P(—-) < — . 31

LT s ()= [T e e
Therefore, there exist 0 < ¢ < 1 and C' > 1 such that

p(w) p(w)
c/ Vule) ™ g < 0 (9) < C’/ Vul@) [ g (3.32)
Q T T Q T

Since p(z) > 1, we have ¢?®) < ¢ and C < CP(®), Thus, we have
CHVU”LPH(Q) < lulle < C”Vu”LP(‘)(Q)' (3.33)

Lemma 3.1. If u, — u weakly in X and ®(u,) — ®(u) as n — oo, then u, — u
strongly in X.

Proof. If u, — u weakly in X, then clearly u,, — u weakly in X4. From this and
the hypothesis, it follows from [13, Lemma 2.4. 17] that

(I)<un2u) — 0 asn — oo. (3.34)

From (3.32) with 7 = 1, pp)(V(un —u)) — 0 as n — oo, so from Proposition 2.1
(iv) , up — u strongly in X as n — oo. O

Proposition 3.2. Letp € Plog( Q). Then, we can see that the following properties
are satisfied.
(i) We can see ® € C1(X,R).
(ii) The functional @ is sequentially weakly lower semi-continuous, coercive on
X, that is,
D(u)

1im —_—
llullx —oo ||| x

= 00, (3.35)

and bounded on every bounded subset of X.
(i) ® € Wx, that is, if up, — u weakly in X and Iiminf, o ®(u,) < @(u),
then the sequence {un,} has a subsequence converging to u strongly in X.

Proof. (i) Clearly, ® is Gateaux differentiable at every u € X and for any v € X,
the Gateaux differential d® is written by

_ /Q Sy (2, |Vu(@)|2) Vau(z) - Vo(z)dz. (3.36)

We show the continuity of d®. Let u, — u in X, so Vu, — Vu in L) (Q). By
Proposition 2.2 (iv), we have

[(d®(un) — d®(u))(v)|
‘/ z, |V, (2)]?) Vun (z) — Si(z, \Vu(a:)\Q)Vu(x)) - Vou(z)dz

2|85 (-, [Vun ()2)Vun () = Si(-, [Vu)?) Vu) || g g 0l x for all v € X.
(3.37)
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Thus, we have

1d® (un) — d®(u) || x- < 2[[S:(, [Vun()*) V() = S, [Vu()P)Vul) g -
(3.38)
If we define f(z,p) = Si(z,|p|?)p if p # 0 and f(x,p) = 0 if p = 0, then f :
Q x R4 — R? is a Carathéodory function and from (2.25a),

f(2,p)| < Si(x, |p|)|p| < s*|p[Pt™) " = 57| p[P)/P' (@), (3.39)
Therefore, it follows from Proposition 2.9 that
1S (-, | Vtr () 2) Vun (+) — S (-, |Vu(-)|2)Vu(-)||Lp/(.)(Q) —0asn— oo, (3.40)

0 || d®(uy,) —d®(u)| x« — 0, as n — oo. Hence, d® : X — X* is continuous, so ® is
Fréchet differentiable in X and the Fréchet derivative ® = d® belongs to C* (X, R).

(i) Since [0,00) > t > S(x,t?) is convex from Lemma 2.3, the functional ® is
also convex, and continuous from (i). We show that ® is sequentially weakly lower
semi-continuous on X. If it is false, then there exist a sequence {u,} C X and
u € X such that u, — u weakly in X and ®(u) > liminf,, . ®(u,). Then, there
exists a subsequence {u,} of {u,} such that lim, . ®(u, ) = liminf, oo ®(uy).
Hence, ®(u) > lim;, o0 ®(un), so there exist » € R and nj, € N such that ®(u) > r
and ®(u,/ ) < r for n’ > nj. Since ® is continuous, M, := {v € X;®(v) <r}isa
closed and convex subset of X. By the Mazur theorem, M,. is weakly closed. Since
Up — u weakly in X, u € M,.. This is a contradiction to ®(u) > r.

For |Ju|x > 1,

1 Sy z S« -
B(u) = 3 S, | Vu(a))d > F/Q Vu@P e = Sl (34)

Since p~ > 1, we see that ¢ is coercive.
Let |lul|x < M. Then,

0< @) < = [ [Vu@P©de < Sl vl < v vt (342)
p Q p p
Therefore, ® is bounded on every bounded subset of X.

(iii) Let u, — w weakly in X and let liminf, . ®(uy,) < ®(u). Since P is se-
quentially weakly lower semi-continuous from (ii), we have ®(u) < liminf, o, ®(uy).
Thus, liminf,_, ®(u,) = ®(u). Hence, there exists a subsequence {u, } of {u,}
such that lim,_co P(uy) = liminf,, o ®(uy,) = ®(u). By Lemma 3.1, we see that
Uy — u strongly in X. O

Now, we consider the properties of the derivative ®' of ®.

Proposition 3.3. The mapping ®' : X — X* has the following properties.
(i) The mapping @' is strictly monotone on X, bounded on every bounded subset
of X and coercive in the sense that

(@' (u), u)x-x _

1m
llull x —o00 [l x

(3.43)

(ii) The mapping O’ is of (S )-type, that is,

up, — u weakly in X and limsup(®' (uy,), uy, — u)x+ x <0
n—roo

mmply u, — u strongly in X.
(iii) We can see that the mapping ®' : X — X* is a homeomorphim.
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Proof. (i) For a.e. z € Q, define p(a) = $5(z, |a|?) for a € R%. First, it follows

from (2.25a) and (2.25b) that for a.e. = € €, a function G(t) = S(x,#?) is a strictly
monotonically increasing and strictly convex function with respect to ¢ € [0,00).
Indeed, G'(t) = 2tS,(x, %) > 25,tP@)~1 > 0 for t > 0 from (2.25a) and

G (t) = 2(S¢(x, 1?) + 2t2S;; (x, %)) > 0, (3.44)

for ¢ > 0 from (2.25Db).
Thus, for any a,b € R? and 0 < A < 1, we have

p(Aa + (1= Nb) < S(z, (Ma| + (1 = N)[b])*) < Ap(a) + (1= N)p(b).  (3.45)
Thus, ¢ is convex. Moreover, let @ # b and 0 < A < 1. When
[Aa + (1 = N)b| < Ala| + (1 — A)|b|, (3.46)

since the function S(z,t?) is strictly monotonically increasing with respect to ¢, we
have
p(Aa+ (1 —A\)b) = =S(z,|Aa + (1 — \)b?)

< 5S(@, (Nal + (1 = N)[b)?) < Ap(a) + (1= A)p(b).

N = Do =

When |Aa+ (1 —A)b| = Aa|+ (1 —X)|b|, we see that a and b are linearly dependent
since @ - b = |a|lb]. We may assume b # 0, so we can write a = cb. Since
c|b|? = |a||b|, we see ¢ > 0 and ¢ # 1. Thus, we have |a| # |b|. Since S(z,t?) is
strictly convex with respect to ¢, we have

S(z, [Aa+(1-— )\)b|2) = S(z,(Ma|+(1 —)\)|b\)2) < AS(zx, |a\2) +(1=X)S(z,t, |b|2).
(3.47)
Therefore, we have p(Aa + (1 — \)b) < Ap(a) + (1 — X)e(b).
Thereby, it follows from [30, Proposition 25.10] that ¢’ is strictly monotone on
X, that is,

(¢'(a) — ¢'(b),a — b)ga ga > 0 for all a,b € R? with a # b.
Since for u,v € X, u # v in X means that Vu # Vv in L”(‘)(Q)7 we have

(@' (u) — D' (v),u — V) x+ x
= /Q(St(:c, |Vu(z)|?)Vu(z) — Sz, |Vv(x)|2)Vv(:c)) - (Vu(z) — Vo(x)dx > 0.
(3.48)

Thus, @ is strictly monotone.

We show that @’ is bounded on every bounded subset of X. Let |ullx <
M. Then, py.)(|Vu|) < M; for some constant M;. By the Holder inequality
(Proposition 2.2 (ii)),

(@' (u), v)x- x| = ’/QSt(x, [Vu(z)|*)Vu(z) - Vo(z)dz

< 284, Vu() ) V) s g o]l for all v e X.



124 J. Aramaki

Hence, || 9/ (u)||x+ < 2||S¢(z, |Vu|2)Vu||Lp/(.)(Q). Since

Ppr () (St (@, | Vul’) Vu) = /Q(St(337 (Vu(z)[2) | Vu(z))? @ de

IN

/(8*|Vu(x)|p(r)fl)p'(z)dx
Q

IN

max{ (s)®)", (s7) )"} / | Vu(a) P dz
Q

max{(s*)®)", (s*) @)} My,

IN

we have ||®’(u)||x~ < My for some constant My.
We show that &' is coercive. Since

(@ (u), u) - x :/St(x,|Vu(x)\2)|Vu(x)|2dx25*/ V()P da
Q Q
> s.llul/% for ullx >1 (3.49)

and p~ > 1, we can see that ®' is coercive.

(ii) follows from [6, Proposition 9]. The proof consists of the reverse Holder
inequality in which we use (2.25a)-(2.25¢). Here, we omit the proof.

(iii) We note that @ is coercive from (i) and clearly hemi-continuous, that is, for
any u,v,w € X, the mapping [0,1] 3 7 — (®'(u + 7v),w) x~ x is continuous. Since
' is strictly monotone from (i), @’ is injective. By the Browder-Minty theorem
(cf. [30, Theorem 26 Al), &’ is surjective. Thus, (®')~! exists. Since ®’ is continuous,
it suffices to show that (®')~! : X* — X is continuous. Let f,, — fin X* asn — oo.
Define u,, = (®')~1f, and u = (®')~1f. Then, ®(u,) = f, and & (u) = f. We
derive that {u,} is bounded in X. Indeed, if {u,} is unbounded, there exists a
subsequence {u, } of {u,} such that ||u, || x — oo as n’ — oo. Hence, there exists
a constant C' > 0 such that

(@ (un ), unr ) =, x = (fors i) xo x < e[l x= [l | x < Clluellx. (3.50)

This contradicts the coerciveness of @'.
Since {u,} is bounded in a reflexive Banach space X, there exist a subsequence
{un} of {un,} and ug € X such that u,» — up weakly in X, so

lim <<I)/(’U,n//), Uprr — UO>X*,X = lim <<D/(un//) — CI)/(U), Unp!r — UO>X*,X
n' — o0 n'’—oo (351)
= n,l,igloo<fn” — fiunr —ug)x+ x = 0.

Since @’ is of (Sy)-type, we see u,» — ug strongly in X. Since ® is continuous,
D (Uupr) = frr = ' (ug) = f = ®'(u). Hence, ®’(ug) = P’(u). Since P’ is injective,
we see u = ug. By the convergent principle (cf. [30, Thereom 10.13 (i)]), the full
sequence u, — u strongly in X. O

3.2. The properties of the functionals J and K

In this subsection, we consider the functionals J and K defined by (3.6) and (3.7),
respectively.
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Proposition 3.4. Assume that (f;) and (g;) (¢ = 0,1) hold. Then, the following
(i) and (ii) are verified.

(i) We see that J,K € C*(X,R).

(ii) The mappings J', K’ : X — X* are sequentially weakly-strongly continuous,
namely, if u, — u weakly in X, then J'(u,) — J'(u) and K'(u,) — K(u) strongly
in X*, soJ" and K' are compact operators. Moreover, the functionals J, K : X — R
are sequentially weakly continuous.

Proof. For brevity of notations, we write f = f;,9 = g;,a = «;, 8 = B, F = F;
and G = G; for i =0, 1. If we put the functionals

F(u) = /QF(x,u(a:))dm and G(u) = / G(z,u(x))do for u € X, (3.52)

I

it suffices to derive that F and G satisfy (i) and (ii).
(i) Clearly, F' and G are Gateaux differentiable at every u € X and the Gateaux
derivatives dF',dG : X — X* are given by

dF (u)(v) = /Qf(x,u(m))v(x)dx and dG(u)(v) :/F g(z,u(z))v(z)doc  (3.53)

for any v € X. L
We show that dF,dG : X — X* are continuous. Let u,, — w in X. Then, by
Holder inequality (Proposition 2.2 (ii)), we have

~

|dF (up) (v) = dF () (v)| = ‘/Q(f(%un(:v)) — f(@,u(x)))o(z)dz
<2 fCun()) = FGul ) paro @l Lec )

and

~

|dG (un) (v) — dG (u)(v)| =

/F (902, un(@)) — gl u(@)))o(x)do

<2g(,un(-)) — g('7u('))HLB’(')(Fg)HUHLW‘)(FQ)'

Since a(x) < p*(z) for all z € Q and B(x) < p?(x) for all x € Ty, the embedding
mappings X — L*)(Q) and X — LA()(Ty) are continuous, so there exist positive
constants C' and D such that

[vllzacr @) < Cllvlx and [[v]|Lsci(r,) < Dljvlx for v e X. (3.54)
Thus, we have

1dF (un) (v) — dF () (0) ][ x+ < 200 £ (o un () = FCu()] porr g (3.55)

and
4G (un) (v) — dG () (v) | x+ < 2D||g(-,un(-)) = g(- ()| 170 ) (3.56)

By Proposition 2.1 (iv), it suffices to show

pa'(»)(f(vun(-))—J“(vU(')))Z/Q\f(a:,un(x))—f(ﬂmU(ﬂf))\“,(m)dﬂc—>O (3.57)
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and

ppr()r (905 un () = g(u()) = g l9(, un (@) = g(z, u(2))|” @ do — 0, (3.58)

as n — oo. Since a(x) < p*(z) for all z € Q and the embedding map X <
WPt (Q) — L*0)(Q) is continuous, we have u, — u in L*)(Q). By the con-
vergent principle (cf. [5, Appendix]), there exist a subsequence {u, } of {u,} and
0 <u € L*O(Q) such that u, (z) — u(x) ae. € Qasn’ — co and |uy (z)] <
|u(z)| for a.e. € Q and all n’. Since f is a Carathéodory function, |f(x, u (x)) —
fz,u(@)]¥®) = 0ae zeQasn — oo and from (f;) with i =0, 1,

[ @yt (@) = f (@) < 200N f @y (@) + | u(@)| )
< C1(1+ |up (1’)“"(””) + |u(x)\"(””))
< Ci(1+ [a(@)] ") + [ua)|*@).

The last term belongs to L*(£2) and is independent of n’. By the Lebesgue domi-
nated convergence theorem,

Por () (f (s unr () = f( u(-))) — 0 as n — oo. (3.59)
By the convergent principle (cf. [30, Theorem 10.13 (i)]), for the full sequence {u,,},
Par () (f(un () = f(u(+))) — 0 as n — oo. (3.60)

Similarly, since 8(x) < p?(z) for all z € I'y, the embedding map X «— W20 (Q) —
LPC)(Ty) is continuous, we can derive

Pp (.02 (90 un () = g(-u(-))) = 0 as n — oo. (3.61)

Thus, 171 and A@ are Fréchet differentiable and the Fréchet derivatives F’ and @'
satisfy F’ = dF and G’ = dG, so F,G € C*(X,R).

(ii) Since a(x) < p*(z) for all z € Q and B(z) < p?(z) for all z € Ty, it
follows from Proposition 2.3 (iii) and Proposition 2.7 that W2()(Q) — L()(Q)
and WP (Q) — LA()(Ty) are compact embedding mappings. Let u,, — u weakly
in X, so weakly in W'?()(Q). Then, u,, — u strongly in L*()(Q) and in L#)(Ty).
Repeating the arguments of the proof of (i), we see F'(uy) — ﬁ’(u) and G'(uy,) —
G’ (u) strongly in X*, so F’ and G’ are sequentially weakly-strongly continuous, so
are compact operators.

We show that F': X — R is sequentially weakly continuous. Let w,, — u weakly
in X. By the mean value theorem,

F(un) — F(u) = (F' (04 0n(un — u),tn —u)x-x  (0<8, <1).  (3.62)

Then, u + 0, (u, —u) — u weakly in X. Since F' is weakly-strongly continuous,
F'(u+ 6, (u, —u)) = F'(u) strongly in X*. Therefore,

(F' (w4 0 (tn — w)), thy — u) x+.x — 0 as n — oo. (3.63)

Hence, F(u,) — F(u) as n — co.
Similarly, we can show G(u,) = G(u) as n — . O



Existence of Three Weak Solutions in Sobolev Space 127

4. Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1. Let Q be a bounded domain of
R? with a C%!-boundary T satisfying (1.4), and assume that p € Pfg (Q) satisfies
(3.10).

We apply the following result of [25, Theorem 2].

Theorem 4.1. Let B be a separable, reflexive and real Banach space. Assume that
a functional ® : B — R is coercive, sequentially weakly lower semi-continuous, ®
is a C'-functional belonging to Wg, bounded on every bounded subset of B and the
derivative ® : B — B* admits a continuous inverse (®')~! : B* — B. Moreover,
assume that J : B — R is a C'-functional with a compact derivative, and assume
that ® has a strictly local minimum vy € B with ®(ug) = J(ug) = 0. Finally, put

. J(u) J(u)
= 1 S 1 S e 4.1
o me {0’ Pl @) g B(u) [ (1)
J(u)
8= sup — 4.2)
ued—1((0,00)) P(v) (

and assume o < . Then, for each compact interval [a,b] C (%,é) (with the

1 1

conventions 5 = 00, .= = 0), there exists r > 0 with the following property: for

every A € [a,b] and every C*-functional K : B — R with a compact derivative, there
exists § > 0 such that for each p € [0, 6], the equation ®'(u) = AJ'(u) + pK'(u) has
at least three solutions whose norms are less than r.

Proof. We note that if u € X is a critical point of the functional I, that is,
I'(u) = @' (u) — AJ'(u) — pK'(u) = 0, then u is a weak solution of (1.1). Under the
hypotheses of Theorem 3.1, we derive the hypotheses of Theorem 4.1 with B = X
defined by (2.22) and the functionals @, J and K defined by (3.5), (3.6) and (3.7).
Since ®(u) > 0 for all u € X, and ®(u) = 0, if and only if uw = 0, ® has a strictly
local minimum u = 0, and by the definitions of Fy and Gy, clearly J(0) = 0, so
®(0) = J(0) = 0. Moreover, the hypotheses on ® and J follows from the results of
Section 3.

Fix € > 0. From (3.11) and (3.12), there exist p; and ps with 0 < p; < 1 < po
such that

Fo(z,t) <eltP” for all (z,t) € Q x [—p1, pul,

Fy(z,t) <elt]P for all (z,t) € Qx (R\ [—p2, p2])
and

Golz,t) <eltP”  for all (z,t) € Ty x [—p1, pul,
Go(z,t) <elt|P for all (z,t) € Ty x (R\ [—p2, p2]). (4.6)

Thus, we have
Fo(z,t) < £\t|p+ for all (z,t) € Q@ x (R\ ([—p2, —p1] U [p1, p2])) (4.7
and

Gola,t) < elt|”” for all (z,t) € Ty x (R\ ([—p2, —p1] U [p1, pa)).- (4.8)
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On the other hand, since fy and gg satisfy (fo) and (go) respectively, we have

C C:
|Fy(a,t)| < Cholt] + 2(0) |20 ®) < Oy olt] + 2221¢|*0™ for (z,t) € A x R (4.9)
O

and
Dy

O

Dy o
|Go(z,t)| < D10|t|+ﬂ = )|t|ﬁo<w> < Dy olt|+ =22 t|°® for (z,t) € TaxR. (4.10)

Hence, Fj is bounded on each bounded subset of 2 x R and Gy is bounded on each

bounded subset of I'y x R . O
From hypothesis (3.10),
dp~ d
pt< 2 o @)y ) < d (4.11)

and
_ pa(x) if p(z) < d. (4.12)

If we choose ¢ € R such that p* < ¢ < p?(z) for all # € T's and p™ < q¢ < p*(x) for
all x € €2, then we have

Folz,t) < eltfP” +clt|? for all (z,t) € 2 x R (4.13)

and
Go(z,t) < etlP" + clt|? for all (z,t) € T5 x R (4.14)

for some constant ¢ > 0. Since the embedding mappings X — Lp+(Q), " (T9),
LA(£2), L9(T;) are continuous, there exist positive constants C+ and C, such that

||UHLP+(Q) < Cp+||u||X7 HUHLP‘*'(PQ) < Cp+||u||Xv
[ull o) < Collullx and [Jul[re(r,) < Cyllullx (4.15)

for all w € X. Thus, there exists a constant ¢; > 0 such that

J(u) = /FO(:L‘ u(z))dx + Go(as u(z))do

<5/|u )P dx+cl/|u |qu+5/ lu(z)|? do—l—cl/ |u(z)|9do
<2

(Cpr V" ellull% + 261(Co)|ull

When |ju||x < 1, it follows from Proposition 2.1 that

+ +
2(Cpe )" ellully +2¢(Co)?|lull’
O(u) ~ e [|u[%

(4.16)

J
lim sup ) < €. (4.17)
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On the other hand, since the embedding mappings X — LP (Q),LP (I'y) are
continuous, there exists a constant C,- > 0 such that

lull o= () < Cp-llullx and ||ull - 1,y < Cp-lullx for all u € X. (4.18)

Since F' and G are bounded on each bounded subset of 2 xR and I'y xR respectively,
when |Ju|lx > 1, it follows from (4.4) and (4.6) that there exists a constant C, > 0
such that

J(u) = / Fo(a, u(z))dz + / Fo(, u(z))dz
{20 u(z)|<ps} {2 lux)>p2}

+/ Go(x,u(x))da—l—/ Go(z,u(z))do
{zelaslu(z)|<p2} {wela;|u(z)|>p2}
<20, +25(C, P ully

Hence,

: J(u) _ 2p*(Cp- )P
lim sup < €. 4.19
llullx —o0 P(w) Sx (419

Since € > 0 is arbitrary, it follows from (4.17) and (4.19) that

) ()
e {hf?:sp i <1><>} = 2

Therefore, we have o = 0 in Theorem 4.1. By hypothesis (3.13), we have 8 > 0 in
(4.2). Thus, all the hypotheses of Theorem 4.1 hold. If we put § = 1/3, then the
conclusion of Theorem 3.1 is verified. This completes the proof of Theorem 3.1.
Now, we state a corollary of Theorem 3.2. Assume that
(fo)" A Carathéodory function fj : Q@ x R — R satisfies

|fo(z,t)] < Cro + Caplt|*@~! for ae. € Q and all t € R, (4.21)

where C ¢ and Csy o are non-negative constants, and o € Pfg (Q) satisfies

+ — : |f0 (1’, t)| _ :
ag <p and gl_r)r(l) e 0 uniformly for a.e. x € Q. (4.22)
(go)" A Carathéodory function gg : I's x R — R satisfies

lgo(z,t)] < D1+ D270|t|B°(”3)_1 for a.e. x €'y and all t € R, (4.23)

where D o and D are non-negative constants, and 8y € P}fg(ﬁ) satisfies

+ _ . ‘QO(xvt”
By <p~ and %g% ‘t|p+71

= 0 uniformly for a.e. z € I's. (4.24)
(h) There exists dp > 0 such that
folz,t) > 0 for (z,t) € Q x (0,d0] and go(z,t) > 0 for (z,t) € 'y x (0,d0] (4.25)
or

fo(z,t) >0 for (z,t) € Q x (0,d0] and go(z,t) > 0 for (z,t) € 'y x (0,dp]. (4.26)

Then, we obtain the following corollary of Theorem 3.1.
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Corollary 4.1. Let Q be a bounded domain with a C%*-boundary T satisfying (1.4)
and let p € Pfg(ﬁ) satisfy (3.10). Assume that (fo)’, (go)" and (h) hold. Then,
the conclusion of Theorem 8.1 holds, that is, problem (1.1) has at least three weak
solutions.

Proof. From (4.22), for any € > 0, there exists § > 0 such that if |t| < 0, then
[fo(z,t)] < £|t|p+_1. Hence, for |t| < 0, |Fo(z,t)| < p%|t|p+, we have

Fo(z,t
lim sup esssupIGQJr o(, 1) < £ (4.27)
t—0 114 pt
Since € > 0 is arbitrary, we have
ess s Fy(z,t
lim sup - PreQ- 0@t g, (4.28)
t—0 |t|p

On the other hand, since fj is bounded on each bounded subset of 2 x R from
(fo)', there exists a constant C' > 0 such that |fo(x,t)| < C for (x,t) € Q x [-1,1].
When [t| > 1,

‘fo(l‘,t)‘ < 0071 + 0072‘t|a0(z)—1 < 00,1 + Co7z|t|a0+_1, (429)

so we have | fo(,t)| < Cfy + Colt|*0 ~1. Thus, |Fy(w,t)] < Cf, [t + Cfo|t]*0 for
some constants Cf , and Cf 5. Therefore, since af < p~,

ess sup,eq Fo(x,t)

lim sup <0, (4.30)

[t|—o0 |t~ -

so (3.11) holds.
Similarly, using (go)’, we can derive

esssup,er, Go(z, 1) esssup,er, Go(z,t)

lim sup < 0 and limsup <0, (4.31)

t—0 |t|er [t]—o0 Mpi

Therefore, (3.12) holds.
Under (h), since we can easily choose 0 #Z ¢ € X with 0 < ¢(z) < dp such that

/ Fo(z,po(x))dz+ | Go(z,o(x))do > 0, (4.32)
Q I

(3.13) holds. Thus, all the hypotheses of Theorem 3.1 hold, so the conclusion of
Corollary 4.1 follows from Theorem 3.1. O
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