
Journal of Nonlinear Modeling and Analysis http://jnma-online.com

Volume 6, Number 1, March 2024, 107–132 DOI:10.12150/jnma.2024.107

Existence of Three Weak Solutions for a Class of
Quasi-Linear Elliptic Operators with a Mixed

Boundary Value Problem Containing
p(·)-Laplacian in a Variable Exponent Sobolev

Space

Junichi Aramaki1,†

Abstract In this paper, we consider a mixed boundary value problem to
a class of nonlinear operators containing p(·)-Laplacian. More precisely, we
are concerned with the problem with the Dirichlet condition on a part of
the boundary and the Steklov boundary condition on an another part of the
boundary. We show the existence of at least three weak solutions under some
hypotheses on given functions and the values of parameters.
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1. Introduction

In this paper, we consider the following nonlinear problem
−div [St(x, |∇u(x)|2)∇u(x)] = λf0(x, u(x)) + µf1(x, u(x)) in Ω,

u(x) = 0 on Γ1,

St(x, |∇u(x)|2) ∂u∂n (x) = λg0(x, u(x)) + µg1(x, u(x)) on Γ2,

(1.1)

where Ω ⊂ Rd (d ≥ 2) is a bounded domain with a Lipschitz-continuous bound-
ary Γ, Γ1 and Γ2 are disjoint open subsets of Γ such that Γ1 ∪ Γ2 = Γ, and n
denotes the unit, outer and normal vector to Γ. Thus, we impose the mixed bound-
ary conditions, that is, the Dirichlet condition on Γ1 and the Steklov condition
on Γ2. The given data fi : Ω × R → R and gi : Γ2 × R → R for i = 0, 1
are Carathéodory functions, and λ, µ are parameters. The function S(x, t) is a
Carathéodory function on Ω × [0,∞) satisfying some structure conditions associ-
ated with an anisotropic exponent function p(x) and St = ∂S/∂t. Then, the func-
tion div [St(x, |∇u(x)|2)∇u(x)] is a more general operator than the p(·)-Laplacian
∆p(x)u(x) = div [|∇u(x)|p(x)−2∇u(x)], where p(x) > 1. This generality brings
about difficulties and requires more conditions.
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The study of such a type of differential equations with p(·)-growth conditions
has been a very interesting topic recently. Studying such a problem stimulated its
application in mathematical physics, in particular, in elastic mechanics (Zhikov [32])
and electrorheological fluids (Diening [12], Halsey [19], Mihăilescu and Rădulescu
[24] as well as Růz̆ic̆ka [26]).

Over the last two decades, there have been many articles on the existence of
weak solutions for the Dirichlet boundary condition for the p(·)-Laplacian type,
that is, −div [|∇u|p(x)−2∇u] = f(x, u) in Ω,

u(x) = 0 on Γ.
(1.2)

See, Fan [14], Ji [21,22], Fan and Zhang [16], Avci [7] and Yücedaĝ [28], for example.
On the other hand, for the Steklov boundary condition, that is,−div [|∇u|p(x)−2∇u] = f(x, u) in Ω,

|∇u|p(x)−2 ∂u
∂n = 0 on Γ.

(1.3)

See, Fan and Ji [15], Wei and Chen [27], Yücedaĝ [29], Allaoui et al., [1], Ayoujil [8]
and Deng [11], for example.

However, since we can find only a few papers on the problem with the mixed
boundary value condition in variable exponent Sobolev space as in (1.1) (cf. Ara-
maki [4–6]), we are convinced of the reason for existence of this paper.

Throughout this paper, we assume that Γ1 and Γ2 are disjoint open subsets of
Γ such that

Γ1 ∪ Γ2 = Γ and Γ1 ̸= ∅. (1.4)

When p(x) = p = const., Zeidler [30] considered the following mixed boundary
value problem 

div j = f in Ω,

u = g on Γ1,

j · n = h on Γ2,

(1.5)

where j is the current density, and f(x), g(x) and h(x) are given functions. If j is
of the form

j = −α(|∇u|2)∇u, (1.6)

problem (1.5) corresponds to many physical problems, for example, hydrodynamics,
gas dynamics, electrostatics, heat conduction, elasticity and plasticity.

If α ≡ 1, then problem (1.5) becomes
−∆u = f in Ω,

u = g on Γ1,

− ∂u
∂n = h on Γ2.

(1.7)

From the mathematical point of view, this is a mixed boundary value problem for
the Poisson equation. If α(|∇u|2) = |∇u|p−2, problem (1.5) corresponds to the p-
Laplacian equation. Definitely, if Γ2 = ∅ (resp. Γ1 = ∅), then system (1.5) becomes
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the first (resp. second) boundary value problem respectively. In order to have an
intuitive understanding, let d = 3 and regard u(x) as the temperature of a body
Ω at the point x. Then, j in (1.6) is the current density vector of stationary heat
flow in Ω, f describes outer heat source, and the boundary conditions means the
prescription of the temperature on Γ1 and heat flow through Γ2. System (1.5) rep-
resents a constitutive law which depends on the specific properties of the material.
If α is a positive constant, α represents the heat conductivity, and (1.5) is called
heat conductivity.

Under some assumptions on fi, gi (i = 0, 1) and parameters λ and µ in (1.1),
we show the existence of at least three weak solutions using at least three critical
points theorem of Ricceri [25]. Here, functions f1 and g1 represent perturbation
terms. We make efforts to be self-contained to this paper.

The paper is organized as follows. Section 2 consists of three subsections. In Sub-
section 2.1, we recall some results on variable exponent Lebesgue-Sobolev spaces. In
Subsection 2.2, we introduce a Carathéodory function S(x, t) satisfying the struc-
ture conditions and some properties. In Subsection 2.3, we consider the Nemyckii
operator. Section 3 is devoted to the setting of problem (1.1) rigorously and giving
a main theorem (Theorem 3.1) on the existence of at least three weak solutions.
The proof of Theorem 3.1 and its corollary (Corollary 4.1) are given in Section 4.

2. Preliminaries

Let Ω be a bounded domain in Rd (d ≥ 2) with a Lipschitz-continuous (abbreviated
as C0,1) boundary Γ. Moreover, we assume that Γ satisfies (1.4).

Throughout this paper, we only consider vector spaces of real valued functions
over R. For any space B, we denote Bd by the boldface character B. Hereafter,
we use this character to denote vectors and vector-valued functions, and we denote
the standard inner product of vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd

by a · b =
∑d

i=1 aibi and |a| = (a ·a)1/2. Furthermore, we denote the dual space of
B by B∗ and the duality bracket by ⟨·, ·⟩B∗,B .

2.1. Variable exponent Lebesgue and Sobolev spaces

In this subsection, we recall some well-known results on variable exponent Lebesgue-
Sobolev spaces. See Diening et al., [13], [16], Kovác̆ik and Rácosńık [23] and the
references therein for more details. Throughout this paper, let Ω be a bounded
domain in Rd with a C0,1-boundary Γ, and Ω is locally on the same side of Γ.
Define P(Ω) = {p : Ω → [1,∞); p is a measurable function}. Define

p+ = ess sup
x∈Ω

p(x) and p− = ess inf
x∈Ω

p(x). (2.1)

For any measurable function u on Ω, a modular ρp(·) = ρp(·),Ω is defined by

ρp(·)(u) =

∫
Ω

|u(x)|p(x)dx. (2.2)

The variable exponent Lebesgue space is defined by

Lp(·)(Ω) = {u;u : Ω → R is a measurable function satisfying ρp(·)(u) < ∞} (2.3)
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equipped with the Luxemburg norm

∥u∥Lp(·)(Ω) = inf
{
λ > 0; ρp(·)

(u
λ

)
≤ 1
}
. (2.4)

Then, Lp(·)(Ω) is a Banach space. We also define, for any integer m ≥ 0,

Wm,p(·)(Ω) = {u ∈ Lp(·)(Ω); ∂αu ∈ Lp(·)(Ω) for |α| ≤ m}, (2.5)

where α = (α1, . . . , αd) is a multi-index, |α| =
∑d

i=1 αi, ∂α = ∂α1
1 · · · ∂αd

d and
∂i = ∂/∂xi, endowed with the norm

∥u∥Wm,p(·)(Ω) =
∑

|α|≤m

∥∂αu∥Lp(·)(Ω). (2.6)

Definitely, W 0,p(·)(Ω) = Lp(·)(Ω). Define

W
m,p(·)
0 (Ω) = the closure of the set of Wm,p(·)(Ω)-functions

with compact supports in Ω.
The following three propositions are well-known (see Fan et al., [17], [27], Fan

and Zhao [18], Zhao et al., [28, 31]).

Proposition 2.1. Let p ∈ P(Ω) and let u, un ∈ Lp(·)(Ω) (n = 1, 2, . . .). Then, we
have the following properties.

(i) ∥u∥Lp(·)(Ω) < 1(= 1, > 1) ⇐⇒ ρp(·)(u) < 1(= 1, > 1).

(ii) ∥u∥Lp(·)(Ω) > 1 =⇒ ∥u∥p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p

+

Lp(·)(Ω)
.

(iii) ∥u∥Lp(·)(Ω) < 1 =⇒ ∥u∥p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p

−

Lp(·)(Ω)
.

(iv) limn→∞ ∥un − u∥Lp(·)(Ω) = 0 ⇐⇒ limn→∞ ρp(·)(un − u) = 0.
(v) ∥un∥Lp(·)(Ω) → ∞ as n → ∞ ⇐⇒ ρp(·)(un) → ∞ as n → ∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ P+(Ω), where

P+(Ω) = {p ∈ P(Ω); 1 < p− ≤ p+ < ∞}. (2.7)

(i) For any ε > 0, there exists a constant C(ε) > 0 such that∣∣∣∣∫
Ω

u(x)v(x)dx

∣∣∣∣ ≤ ερp(·)(u) + C(ε)ρp′(·)(v) for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).

(2.8)
(ii) For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∫

Ω

|u(x)v(x)|dx ≤
(

1

p−
+

1

(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω) ≤ 2∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

(2.9)
Here and from now on, p′(·) is the conjugate exponent of p(·), that is, 1

p(x) +
1

p′(x) = 1.

For p ∈ P(Ω), define

p∗(x) =


dp(x)
d−p(x) if p(x) < d,

∞ if p(x) ≥ d.
(2.10)
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Proposition 2.3. Let Ω be a bounded domain with C0,1-boundary and let p ∈
P+(Ω) and m ≥ 0 be an integer. Then, we have the following.

(i) The spaces Lp(·)(Ω) and Wm,p(·)(Ω) are separable, reflexive and uniformly
convex Banach spaces.

(ii) If q(·) ∈ P+(Ω) and satisfies q(x) ≤ p(x) for all x ∈ Ω, then Wm,p(·)(Ω) ↪→
Wm,q(·)(Ω), where ↪→ means that the embedding is continuous.

(iii) If q(x) ∈ P+(Ω) satisfies q(x) < p∗(x) for all x ∈ Ω, then the embedding
W 1,p(·)(Ω) ↪→ Lq(·)(Ω) is compact.

We say that p ∈ P(Ω) belongs to P log(Ω), if p has the log-Hölder continuity in
Ω. That is, p : Ω → R satisfies that there exists a constant Clog(p) > 0 such that

|p(x)− p(y)| ≤ Clog(p)

log(e+ 1/|x− y|)
for all x, y ∈ Ω. (2.11)

We also write P log
+ (Ω) = {p ∈ P log(Ω); 1 < p− ≤ p+ < ∞}.

Proposition 2.4. If p ∈ P log
+ (Ω) and m ≥ 0 is an integer, then D(Ω) := C∞

0 (Ω)

is dense in W
m,p(·)
0 (Ω).

For the proof, see [13, Corollary 11.2.4].
Next, we consider the trace. Let Ω be a domain of Rd with a C0,1-boundary

Γ and p ∈ P+(Ω). Since W 1,p(·)(Ω) ⊂ W 1,1
loc (Ω), the trace γ(u) = u

∣∣
Γ
to Γ of any

function u in W 1,p(·)(Ω) is well defined as a function in L1
loc(Γ). We define

[Tr(W 1,p(·)(Ω)) = (TrW 1,p(·))(Γ)

= {f ; f is the trace to Γ of a function F ∈ W 1,p(·)(Ω)} (2.12)

equipped with the norm

∥f∥(TrW 1,p(·))(Γ) = inf{∥F∥W 1,p(·)(Ω);F ∈ W 1,p(·)(Ω) satisfying F
∣∣
Γ
= f} (2.13)

for f ∈ (TrW 1,p(·))(Γ), where the infimum can be achieved. Then, (TrW 1,p(·))(Γ) is
a Banach space. More precisely, see [13, Chapter 12]. Later, we also write F

∣∣
Γ
= g

by F = g on Γ. Moreover, we denote

(TrW 1,p(·))(Γi) = {f
∣∣
Γi
; f ∈ (TrW 1,p(·))(Γ)} for i = 1, 2 (2.14)

equipped with the norm

∥g∥(TrW 1,p(·))(Γi) = inf{∥f∥(TrW 1,p(·))(Γ); f ∈ (TrW 1,p(·))(Γ) satisfying f
∣∣
Γi
= g},
(2.15)

where the infimum also can be achieved. Therefore, for any g ∈ (TrW 1,p(·))(Γi),
there exists F ∈ W 1,p(·)(Ω) such that F

∣∣
Γi
= g and ∥F∥W 1,p(·)(Ω) = ∥g∥(TrW 1,p(·))(Γi).

Let q ∈ P+(Γ) := {q ∈ P(Γ); q− > 1} and denote the surface measure on Γ
induced from the Lebesgue measure dx on Ω by dσ. We define

Lq(·)(Γ) =

{
u;u : Γ → R is a measurable function with respect to dσ satisfying∫

Γ

|u(x)|q(x)dσ < ∞
}
,
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and the norm is defined by

∥u∥Lq(·)(Γ) = inf

{
λ > 0;

∫
Γ

∣∣∣∣u(x)λ

∣∣∣∣q(x) dσ ≤ 1

}
, (2.16)

and we also define a modular on Lq(·)(Γ) by

ρq(·),Γ(u) =

∫
Γ

|u(x)|q(x)dσ. (2.17)

Proposition 2.5. We have the following properties.

(i) ∥u∥Lq(·)(Γ) ≥ 1 =⇒ ∥u∥q
−

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q

+

Lq(·)(Γ)
.

(ii) ∥u∥Lq(·)(Γ) < 1 =⇒ ∥u∥q
+

Lq(·)(Γ)
≤ ρq(·),Γ(u) ≤ ∥u∥q

−

Lq(·)(Γ)
.

Proposition 2.6. Let Ω be a bounded domain with a C0,1-boundary Γ satisfying
(1.4) and let p ∈ P log

+ (Ω). If f ∈ (TrW 1,p(·))(Γ), then f ∈ Lp(·)(Γ) and there exists
a constant C > 0 such that

∥f∥Lp(·)(Γ) ≤ C∥f∥(TrW 1,p(·))(Γ). (2.18)

In particular, if f ∈ (TrW 1,p(·))(Γ), then f ∈ Lp(·)(Γ1) and

∥f∥Lp(·)(Γ1) ≤ C∥f∥(TrW 1,p(·))(Γ). (2.19)

For p ∈ P+(Ω), define

p∂(x) =


(d−1)p(x)
d−p(x) if p(x) < d,

∞ if p(x) ≥ d.
(2.20)

Proposition 2.7. Let p ∈ P+(Ω). Then, if q(x) ∈ P+(Ω) satisfies q(x) < p∂(x)
for all x ∈ Γ, the trace mapping W 1,p(·)(Ω) → Lq(·)(Γ) is well-defined, compact and
continuous. In particular, the trace mapping W 1,p(·)(Ω) → Lp(·)(Γ) is compact and
continuous, and there exists a constant C > 0 such that

∥u∥Lp(·)(Γ) ≤ C∥u∥W 1,p(·)(Ω) for u ∈ W 1,p(·)(Ω). (2.21)

Define a basic space of this paper by

X = {v ∈ W 1,p(·)(Ω); v = 0 on Γ1}. (2.22)

Then, it is clear to see that X is a closed subspace of W 1,p(·)(Ω), so X is a reflexive,
separable and uniformly convex Banach space. We show the following Poincaré
type inequality (cf. Ciarlet and Dinca [10]).

Lemma 2.1. Let p ∈ P log
+ (Ω). Then, there exists a constant C = C(Ω, d, p) > 0

such that

∥u∥Lp(·)(Ω) ≤ C∥∇u∥Lp(·)(Ω) for all u ∈ X. (2.23)

In particular, ∥∇u∥Lp(·)(Ω) is equivalent to ∥u∥W 1,p(·)(Ω) for u ∈ X.
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Proof. If the conclusion is false, then there exists a sequence {un} ⊂ X such that
∥un∥Lp(·)(Ω) = 1 and 1 > n∥∇un∥Lp(·)(Ω). Since ∥un∥Lp(·)(Ω) = 1 and ∇un → 0

strongly in Lp(·)(Ω), {un} is bounded in W 1,p(·)(Ω). Therefore, by the fact that X
is a reflexive Banach space, there exists a subsequence {un′} of {un} and u ∈ X
such that un′ → u weakly in W 1,p(·)(Ω) and in Lp(·)(Ω). Thus, un′ → u in D′(Ω)
(the set of all distributions in Ω), so ∇un′ → ∇u in D′(Ω). Since ∇un′ → 0 in

Lp(·)(Ω), ∇u = 0 in D′(Ω). Therefore, u = const. (cf. Boyer and Fabrie [9, Lemma
II. 2.44]). As u = 0 on Γ1( ̸= ∅), we have u = 0. Thus, un′ → 0 weakly in W 1,p(·)(Ω).
Since p(x) < p∗(x) for all x ∈ Ω, the embedding mapping W 1,p(·)(Ω) ↪→ Lp(·)(Ω) is
compact, so un′ → 0 strongly in Lp(·)(Ω). This contradicts ∥un′∥Lp(·)(Ω) = 1.

Thus, we can define the norm on X, so that

∥v∥X = ∥∇v∥Lp(·)(Ω) for v ∈ X, (2.24)

which is equivalent to ∥v∥W 1,p(·)(Ω).

2.2. A Carathéodory function

Let p ∈ P log
+ (Ω) be fixed. Let S(x, t) be a Carathéodory function on Ω× [0,∞) and

assume that for a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩ C([0,∞)) satisfies the following
structure conditions: there exist positive constants 0 < s∗ ≤ s∗ < ∞ such that for
a.e. x ∈ Ω.

S(x, 0) = 0 and s∗t
(p(x)−2)/2 ≤ St(x, t) ≤ s∗t(p(x)−2)/2 for t > 0. (2.25a)

s∗t
(p(x)−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ s∗t(p(x)−2)/2 for t > 0. (2.25b)

Stt(x, t) < 0 when 1 < p(x) < 2

and Stt(x, t) ≥ 0 when p(x) ≥ 2 for t > 0, (2.25c)

where St = ∂S/∂t and Stt = ∂2S/∂t2. We note that from (2.25a), we have

2

p(x)
s∗t

p(x)/2 ≤ S(x, t) ≤ 2

p(x)
s∗tp(x)/2 for t ≥ 0. (2.26)

We introduce two examples.

Example 2.1. (i) When S(x, t) = ν(x) 1
p(x) t

p(x)/2, where ν is a measurable function

in Ω satisfying 0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ for a.e. in Ω, the function S(x, t) satisfies
(2.25a)-(2.25c). We see that (1.1) is an extension of the problem (1.2) or (1.3).

(ii) As an another example, we can take

g(t) =

ae−1/t + a for t > 0,

a for t = 0,
(2.27)

where a > 0 is a constant. Then, we can see that S(x, t) = ν(x)g(t) 1
p(x) t

p(x)/2

satisfies (2.25a)-(2.25c), if p(x) ≥ 2 for all x ∈ Ω, (cf. Aramaki [2]).

We have the following estimate of St.

Lemma 2.2. Under hypotheses (2.25a)-(2.25c), there exists a constant c > 0 de-
pending only on s∗ and p+ such that for any a, b ∈ Rd,
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St(x, |a|2)a− St(x, |b|2)b

)
· (a− b)

≥

 c|a− b|p(x) when p(x) ≥ 2,

c(|a|+ |b|)p(x)−2|a− b|2 when 1 < p(x) < 2.
(2.28)

For the proof, see Aramaki [3, Lemma 3.6].

Lemma 2.3. Under hypotheses (2.25a)-(2.25b), the function T (x, t) = 1
2S(x, t

2)
defined in Ω× [0,∞) is uniformly convex with respect to t ∈ [0,∞), that is, for any
ε > 0, there exists a constant δ = δ(ε) > 0 independent of x such that

|t− s| ≤ εmax{t, s} or T

(
x,

t+ s

2

)
≤ (1− δ)

T (x, t) + T (x, s)

2

for a.e. x ∈ Ω and all t, s ≥ 0. Moreover, the function T (x, t) is strictly monotoni-
cally increasing and strictly convex with respect to t ∈ [0,∞).

For the proof, see [4, Lemma 2.8].
Lemma 2.3 is extended as follows.

Proposition 2.8. For any ε2 > 0, there exists a constant δ2 = δ2(ε2) > 0 indepen-
dent of x such that

|a− b| ≤ ε2 max{|a|, |b|} or T

(
x,

∣∣∣∣a+ b

2

∣∣∣∣) ≤ (1− δ2)
T (x, |a|) + T (x, |b|)

2

for any a, b ∈ Rd and a.e. x ∈ Ω.

Proof. Fix ε2, so that 0 < ε2 <
√
16/3 and put ε = ε2/2. Choose δ = δ(ε) > 0

as in Lemma 2.3. Let |a− b| > ε2 max{|a|, |b|}. If

||a| − |b|| > εmax{|a|, |b|}
(
≥ ε

|a|+ |b|
2

)
, (2.29)

then it follows from Lemma 2.3 that the conclusion holds with δ2 = δ. Thus, we
assume ||a| − |b|| ≤ εmax{|a|, |b|}. Then,

|a− b| > ε2 max{|a|, |b|} = 2εmax{|a|, |b|} ≥ 2 ||a| − |b|| . (2.30)

Therefore, we have∣∣∣∣a+ b

2

∣∣∣∣2 =
|a|2

2
+

|b|2

2
−
∣∣∣∣a− b

2

∣∣∣∣2
=

|a|2

2
+

|b|2

2
− 3

4

∣∣∣∣a− b

2

∣∣∣∣2 − 1

4

∣∣∣∣a− b

2

∣∣∣∣2
≤ |a|2

2
+

|b|2

2
− 3

4

∣∣∣∣a− b

2

∣∣∣∣2 − ( |a| − |b|
2

)2

=

(
|a|+ |b|

2

)2

− 3

4

∣∣∣∣a− b

2

∣∣∣∣2 .
Since |a− b| > ε2 max{|a|, |b|} ≥ ε2

|a|+|b|
2 , we have∣∣∣∣a+ b

2

∣∣∣∣2 ≤
(
1− 3ε22

16

)(
|a|+ |b|

2

)2

. (2.31)
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Let δ2 = 1 −
√
1− 3ε22/16 > 0. Since T (x, t) is monotonically increasing, convex

with respect to t and T (x, 0) = 0, we see

T

(
x,

∣∣∣∣a+ b

2

∣∣∣∣) ≤ T

(
x, (1− δ2)

|a|+ |b|
2

)
≤ (1− δ2)T

(
x,

|a|+ |b|
2

)
≤ (1− δ2)

T (x, |a|) + T (x, |b|)
2

.

Remark 2.1. This proposition is a slight extension of [13, Lemma 2.4.7].

2.3. The Nemytskii operator

In this subsection, we consider the Nemytskii operator. Let Ω be a open subset of
Rd and let f : Ω× Rm → Rl be a function, that is,

f(x,p) = (f1(x, p1, . . . , pm), . . . , fl(x, p1, . . . , pm)), x ∈ Ω,p = (p1, . . . , pm) ∈ Rm.

Assume the following (H.1) and (H.2).
(H.1) f(x,p) is a Carathéodory function defined in Ω × Rm, that is, for any

p ∈ Rm, a function x 7→ f(x,p) is measurable in Ω and for a.e. x ∈ Ω, a function
p 7→ f(x,p) is continuous in Rm.

(H.2) The growth condition: for every j = 1, . . . , l, there exist a constant bj > 0
and functions pi, qj ∈ P log(Ω) such that 1 ≤ p−i ≤ p+i < ∞ for i = 1, . . . ,m,
1 ≤ q−j ≤ q+j < ∞ and a non-negative function aj ∈ Lqj (Ω) such that

|fj(x,p)| ≤ aj(x) + bj

m∑
i=1

|pi|pi(x)/qj(x). (2.32)

For any function u(x) = (u1(x), . . . , um(x)), define the Nemytskii operator F
by

F (u)(x) = f(x,u(x)) for x ∈ Ω. (2.33)

Then, we have the following proposition.

Proposition 2.9. Under hypotheses (H.1) and (H.2), the Nemytskii operator

F :

m∏
i=1

Lpi(·)(Ω) →
l∏

j=1

Lqj(·)(Ω) (2.34)

is continuous and bounded with

ρqj(·)(Fju) ≤ Cj

(
ρqj(·)(aj) +

m∑
i=1

ρpi(·)(ui)

)
for j = 1, . . . , l. (2.35)

Proof. It suffices to show the case l = 1. For the brevity of notations, we write
q = q1, a = a1, b = b1, f = f and F = F .

First, we show the continuity of F . Let u(n) → u in
∏m

i=1 L
pi(·)(Ω). By the

convergent principle (cf. [5, Appendix]), there exist a subsequence {u(n′)} of {u(n)}
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and gi ∈ Lpi(·)(Ω) (i = 1, . . . ,m) such that u
(n′)
i (x) → ui(x) as n′ → ∞ for a.e.

x ∈ Ω and |u(n′)
i (x)| ≤ gi(x) for all n

′, a.e. x ∈ Ω and i = 1, . . . ,m. We show that

∥Fu(n′) − Fu∥Lq(·)(Ω) → 0 as n′ → ∞. By Proposition 2.1 (iv), it suffices to show

ρq(·)(Fu(n′)−Fu) =

∫
Ω

|f(x,u(n′)(x))− f(x,u(x))|q(x)dx → 0 as n′ → ∞. (2.36)

Since f is a Carathéodory function and u(n′)(x) → u(x) a.e. x ∈ Ω as n′ → ∞, we
see

|f(x,u(n′)(x))− f(x,u(x))|q(x) → 0 for a.e. x ∈ Ω as n′ → ∞.

Moreover, from (H.2), we have

|f(x,u(n′)(x))− f(x,u(x))|q(x)

≤ C(|f(x,u(n′)(x))|q(x) + |f(x,u(x))|q(x))

≤ C1

(
a(x)q(x) + b

m∑
i=1

|u(n′)
i (x)|pi(x) + b

m∑
i=1

|ui(x)|pi(x)

)

≤ C2

(
a(x)q(x) + b

m∑
i=1

gi(x)
pi(x) + b

m∑
i=1

|ui(x)|pi(x)

)
for some constants C,C1 and C2. The last term is an integrable function in Ω which
is independent of n′. By the Lebesgue dominated convergent theorem, (2.36) holds.
By the convergent principle (cf. [30, Proposition 10.13 (i)], for the full sequence
{u(n)}, we have ρq(·)(Fu(n) − Fu) → 0, as n → ∞.

Next, we consider the estimate (2.35) with l = 1,

ρq(·)(Fu) =

∫
Ω

|f(x,u(x))|q(x)dx

≤
∫
Ω

(
a(x) + b

m∑
i=1

|ui(x)|pi(x)/q(x)

)q(x)

dx

≤ C3

∫
Ω

(
a(x)q(x) +

m∑
i=1

|ui(x)|pi(x)

)
dx

= C3

(
ρq(·)(a) +

m∑
i=1

ρpi(·)(ui)

)
,

where C3 is a constant. Thus, the estimate (2.35) with l = 1 holds.

3. Setting of the problem and the main theorem

In this section, we consider system (1.1). From now on, we suppose the following
conditions. For i = 0, 1,

(fi) a Carathéodory function fi : Ω× R → R satisfies

|fi(x, t)| ≤ C1,i + C2,i|t|αi(x)−1 for a.e x ∈ Ω and all t ∈ R, (3.1)

where C1,i and C2,i are non-negative constants and αi ∈ P log
+ (Ω) satisfies that

αi(x) < p∗(x) for all x ∈ Ω.
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(gi) a Carathéodory function gi : Γ2 × R → R satisfies

|gi(x, t)| ≤ D1,i +D2,i|t|βi(x)−1 for a.e x ∈ Γ2 and all t ∈ R, (3.2)

where D1,i and D2,i are non-negative constants and βi ∈ P log
+ (Γ2) satisfies βi(x) <

p∂(x) for all x ∈ Γ2.
We introduce the notion of weak solutions for problem (1.1).

Definition 3.1. We say u ∈ X defined by (2.22) is a weak solution of (1.1), if∫
Ω

St(x, |∇u(x)|2)∇u(x) · ∇v(x)dx

=λ

(∫
Ω

f0(x, u(x))v(x)dx+

∫
Γ2

g0(x, u(x))v(x)dσ

)
+ µ

(∫
Ω

f1(x, u(x))v(x)dx+

∫
Γ2

g1(x, u(x))v(x)dσ

)
for all v ∈ X.

(3.3)

We want to solve problem (1.1). For this purpose, we consider the functional on
X defined by

I(u) = Φ(u)− λJ(u)− µK(u) for u ∈ X, (3.4)

where

Φ(u) =
1

2

∫
Ω

S(x, |∇u(x)|2)dx, (3.5)

J(u) =

∫
Ω

F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ, (3.6)

K(u) =

∫
Ω

F1(x, u(x))dx+

∫
Γ2

G1(x, u(x))dσ, (3.7)

and for every i = 0, 1,

Fi(x, t) =

∫ t

0

fi(x, s)ds for (x, t) ∈ Ω× R, (3.8)

Gi(x, t) =

∫ t

0

gi(x, s)ds for (x, t) ∈ Γ2 × R. (3.9)

We are in a position to state the main theorem.

Theorem 3.1. Let Ω be a bounded domain of Rd (d ≥ 2) with a C0,1-boundary Γ

satisfying (1.4) and p ∈ P log
+ (Ω) verifying

p+ − p− <
p+p− − p−

d
if p− < d. (3.10)

Assume that the functions f0 and g0 satisfy (f0) and (g0). Moreover, suppose

max

{
lim sup

t→0

ess supx∈Ω F0(x, t)

|t|p+ , lim sup
|t|→∞

ess supx∈Ω F0(x, t)

|t|p−

}
≤ 0, (3.11)

max

{
lim sup

t→0

ess supx∈Γ2
G0(x, t)

|t|p+ , lim sup
|t|→∞

ess supx∈Γ2
G0(x, t)

|t|p−

}
≤ 0 (3.12)
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and

sup
u∈X

(∫
Ω

F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ

)
> 0. (3.13)

Set

θ = inf

{
1
2

∫
Ω
S(x, |∇u(x)|2)dx∫

Ω
F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ
;u ∈ X with∫

Ω

F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ > 0

}
. (3.14)

Then, for each compact interval [a, b] ⊂ (θ,∞), there exists r > 0 with the following
property: for every λ ∈ [a, b] and any functions f1 and g1 satisfying (f1) and (g1),
there exists δ > 0 such that for each µ ∈ [0, δ], problem (1.1) has at least three weak
solutions whose norms are less than r.

Remark 3.1. In Ji [20], the author considered the case Γ2 = ∅, and insisted that
there exists q ∈ R such that p+ < q < p∗(x) for all x ∈ Ω. However, in general, this
does not hold without the hypothesis p+ − p− < p+p−/d.

Before the proof of Theorem 3.1, we consult the properties of the functionals Φ,
J and K defined by (3.5), (3.6) and (3.7) respectively in the following subsections.

3.1. The property of Φ

Proposition 3.1. The functional Φ on X defined by (3.5) is a positive and con-
tinuous modular, and uniformly convex, that is, for any ε > 0, there exists δ > 0
such that

Φ

(
u− v

2

)
≤ ε

Φ(u) + Φ(v)

2
or Φ

(
u+ v

2

)
≤ (1− δ)

Φ(u) + Φ(v)

2
(3.15)

for all u, v ∈ X.

Proof. First, we note that un → u in X means that ∇un → ∇u in Lp(·)(Ω),
and that the function S(x, t) is a Carathéodory function on Ω × [0,∞). Since
S(x, |∇u(x)|2) ≤ 2s∗

p− |∇u(x)|p(x), by (2.26), the Nemytskii operator

F (∇u)(x) = T (x, |∇u(x)|) = 1

2
S(x, |∇u(x)|2) (3.16)

is continuous from Lp(·)(Ω) to L1(Ω). Thus, if un → u in X, then∫
Ω

T (x, |∇un(x)|dx →
∫
Ω

T (x, |∇u(x)|)dx as n → ∞. (3.17)

Therefore, Φ is continuous on X. Since u = 0 in X, if and only if ∇u = 0 from the
Poincaré type inequality Lemma 2.1, it is easy to see that Φ is a positive modular
(cf. [13, Definition 2.1.1]). We derive that Φ is uniformly convex. Let 0 < ε < 1.
Put ε2 = ε/2 and choose δ2 > 0 as in Proposition 2.8. Assume

Φ

(
u− v

2

)
> ε

Φ(u) + Φ(v)

2
. (3.18)
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We show

Φ

(
u+ v

2

)
≤
(
1− δ2ε

2

)
Φ(u) + Φ(v)

2
. (3.19)

Put E =
{
x ∈ Ω; |∇u(x)−∇v(x)| > ε

2 max{|∇u(x)|, |∇v(x)|}
}
, for a.e x ∈ Ω \E,

|∇u(x)−∇v(x)| ≤ ε2 max{|∇u(x)|, |∇v(x)|} ≤ ε2(|∇u(x)|+ |∇v(x)|). (3.20)

Then, we decompose Φ as Φ(u) = ΦE(u) + ΦΩ\E(u), where

ΦE(u) =

∫
E

T (x, |∇u(x)|)dx and ΦΩ\E(u) =

∫
Ω\E

T (x, |∇u(x)|)dx. (3.21)

Since T (x, t) is a monotonically increasing and convex function on Ω× [0,∞) with
respect to t-variable and T (x, 0) = 0, we have

ΦΩ\E

(
u− v

2

)
=

∫
Ω\E

T

(
x,

∣∣∣∣∇u(x)−∇v(x)

2

∣∣∣∣) dx

≤
∫
Ω\E

T

(
x, ε2

|∇u(x)|+ |∇v(x)|
2

)
dx

≤ ε2

∫
Ω\E

T

(
x,

|∇u(x)|+ |∇v(x)|
2

)
dx

≤ ε2

∫
Ω\E

T (x, |∇u(x)|) + T (x, |∇v(x)|)
2

dx

=
ε

2

ΦΩ\E(u) + ΦΩ\E(v)

2

≤ ε

2

Φ(u) + Φ(v)

2
.

From this inequality and (3.18), we have

ΦE

(
u− v

2

)
= Φ

(
u− v

2

)
− ΦΩ\E

(
u− v

2

)
> ε

Φ(u) + Φ(v)

2
− ε

2

Φ(u) + Φ(v)

2

=
ε

2

Φ(u) + Φ(v)

2
. (3.22)

On the other hand, for a.e. x ∈ E, since

|∇u(x)−∇v(x)| > ε2 max{|∇u(x)|, |∇v(x)|}, (3.23)

it follows from Proposition 2.8 that

T

(
x,

∣∣∣∣∇u(x) +∇v(x)

2

∣∣∣∣) ≤ (1− δ2)
T (x, |∇u(x)|) + T (x, |∇v(x)|)

2
. (3.24)

Hence,

ΦE

(
u+ v

2

)
=

∫
E

T

(
x,

∣∣∣∣∇u(x) +∇v(x)

2

∣∣∣∣) dx ≤ (1− δ2)
ΦE(u) + ΦE(v)

2
. (3.25)
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Since the function Rd ∋ a 7→ T (x, |a|) is convex, we see

T (x, |a|) + T (x, |b|)
2

− T

(
x,

∣∣∣∣a+ b

2

∣∣∣∣) ≥ 0. (3.26)

Therefore, we have

ΦΩ\E(u) + ΦΩ\E(v)

2
− ΦΩ\E

(
u+ v

2

)
=

∫
Ω\E

{
T (x, |∇u(x)|) + T (x, |∇v(x)|)

2
− T

(
x,

∣∣∣∣∇u(x) +∇v(x)

2

∣∣∣∣)} dx ≥ 0.

(3.27)

Therefore, from (3.25) and (3.22), we have

Φ(u) + Φ(v)

2
− Φ

(
u+ v

2

)
=

ΦE(u) + ΦE(v)

2
− ΦE

(
u+ v

2

)
+
ΦΩ\E(u) + ΦΩ\E(v)

2
− ΦΩ\E

(
u+ v

2

)
≥ ΦE(u) + ΦE(v)

2
− ΦE

(
u+ v

2

)
≥ ΦE(u) + ΦE(v)

2
− (1− δ2)

ΦE(u) + ΦE(v)

2

= δ2
ΦE(u) + ΦE(v)

2

= δ2

∫
E

T (x, |∇u(x)|) + T (x, |∇v(x)|)
2

dx

≥ δ2

∫
E

T

(
x,

∣∣∣∣∇u(x)−∇v(x)

2

∣∣∣∣) dx

= δ2ΦE(u− v)

≥ δ2ε

2

Φ(x) + Φ(v)

2
.

This means that (3.19) holds.
Since Φ is a modular on X, the modular space and the Luxembourg norm

associated with Φ are defined by

XΦ = {u ∈ X; lim
τ→0

Φ(τu) = 0} (3.28)

and
∥u∥Φ = inf

{
τ > 0; Φ

(u
τ

)
≤ 1
}

for u ∈ XΦ. (3.29)

Clearly, we see XΦ = X. By (2.26), we have∫
Ω

s∗
p(x)

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x) dx ≤ Φ
(u
τ

)
=

1

2

∫
Ω

S

(
x,

∣∣∣∣∇u(x)

τ

∣∣∣∣2
)
dx

≤
∫
Ω

s∗

p(x)

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x) dx. (3.30)
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Hence,

s∗
p+

∫
Ω

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x) dx ≤ Φ
(u
τ

)
≤ s∗

p−

∫
Ω

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x) dx. (3.31)

Therefore, there exist 0 < c < 1 and C > 1 such that

c

∫
Ω

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x) dx ≤ Φ
(u
τ

)
≤ C

∫
Ω

∣∣∣∣∇u(x)

τ

∣∣∣∣p(x) dx. (3.32)

Since p(x) > 1, we have cp(x) ≤ c and C ≤ Cp(x). Thus, we have

c∥∇u∥Lp(·)(Ω) ≤ ∥u∥Φ ≤ C∥∇u∥Lp(·)(Ω). (3.33)

Lemma 3.1. If un → u weakly in X and Φ(un) → Φ(u) as n → ∞, then un → u
strongly in X.

Proof. If un → u weakly in X, then clearly un → u weakly in XΦ. From this and
the hypothesis, it follows from [13, Lemma 2.4. 17] that

Φ

(
un − u

2

)
→ 0 as n → ∞. (3.34)

From (3.32) with τ = 1, ρp(·)(∇(un − u)) → 0 as n → ∞, so from Proposition 2.1
(iv) , un → u strongly in X as n → ∞.

Proposition 3.2. Let p ∈ P log
+ (Ω). Then, we can see that the following properties

are satisfied.
(i) We can see Φ ∈ C1(X,R).
(ii) The functional Φ is sequentially weakly lower semi-continuous, coercive on

X, that is,

lim
∥u∥X→∞

Φ(u)

∥u∥X
= ∞, (3.35)

and bounded on every bounded subset of X.
(iii) Φ ∈ WX , that is, if un → u weakly in X and lim infn→∞ Φ(un) ≤ Φ(u),

then the sequence {un} has a subsequence converging to u strongly in X.

Proof. (i) Clearly, Φ is Gâteaux differentiable at every u ∈ X and for any v ∈ X,
the Gâteaux differential dΦ is written by

dΦ(u)(v) =

∫
Ω

St(x, |∇u(x)|2)∇u(x) ·∇v(x)dx. (3.36)

We show the continuity of dΦ. Let un → u in X, so ∇un → ∇u in Lp(·)(Ω). By
Proposition 2.2 (iv), we have

|
(
dΦ(un)− dΦ(u)

)
(v)|

=

∣∣∣∣∫
Ω

(
St(x, |∇un(x)|2)∇un(x)− St(x, |∇u(x)|2)∇u(x)

)
·∇v(x)dx

∣∣∣∣
≤2∥St(·, |∇un(·)|2)∇un(·)− St(·, |∇u(·)|2)∇u(·)∥Lp′(·)(Ω)∥v∥X for all v ∈ X.

(3.37)
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Thus, we have

∥dΦ(un)− dΦ(u)∥X∗ ≤ 2∥St(·, |∇un(·)|2)∇un(·)− St(·, |∇u(·)|2)∇u(·)∥Lp′(·)(Ω).

(3.38)
If we define f(x,p) = St(x, |p|2)p if p ̸= 0 and f(x,p) = 0 if p = 0, then f :
Ω× Rd → Rd is a Carathéodory function and from (2.25a),

|f(x,p)| ≤ St(x, |p|2)|p| ≤ s∗|p|p(x)−1 = s∗|p|p(x)/p
′(x). (3.39)

Therefore, it follows from Proposition 2.9 that

∥St(·, |∇un(·)|2)∇un(·)− St(·, |∇u(·)|2)∇u(·)∥Lp′(·)(Ω) → 0 as n → ∞, (3.40)

so ∥dΦ(un)−dΦ(u)∥X∗ → 0, as n → ∞. Hence, dΦ : X → X∗ is continuous, so Φ is
Fréchet differentiable in X and the Fréchet derivative Φ′ = dΦ belongs to C1(X,R).

(ii) Since [0,∞) ∋ t 7→ S(x, t2) is convex from Lemma 2.3, the functional Φ is
also convex, and continuous from (i). We show that Φ is sequentially weakly lower
semi-continuous on X. If it is false, then there exist a sequence {un} ⊂ X and
u ∈ X such that un → u weakly in X and Φ(u) > lim infn→∞ Φ(un). Then, there
exists a subsequence {un′} of {un} such that limn′→∞ Φ(un′) = lim infn→∞ Φ(un).
Hence, Φ(u) > limn′→∞ Φ(un′), so there exist r ∈ R and n′

0 ∈ N such that Φ(u) > r
and Φ(un′) ≤ r for n′ ≥ n′

0. Since Φ is continuous, Mr := {v ∈ X; Φ(v) ≤ r} is a
closed and convex subset of X. By the Mazur theorem, Mr is weakly closed. Since
un′ → u weakly in X, u ∈ Mr. This is a contradiction to Φ(u) > r.

For ∥u∥X > 1,

Φ(u) =
1

2
S(x, |∇u(x)|2)dx ≥ s∗

p+

∫
Ω

|∇u(x)|p(x)dx ≥ s∗
p+

∥u∥p
−

X . (3.41)

Since p− > 1, we see that Φ is coercive.
Let ∥u∥X ≤ M . Then,

0 ≤ Φ(u) ≤ s∗

p−

∫
Ω

|∇u(x)|p(x)dx ≤ s∗

p−
∥u∥p−X ∨ ∥u∥p

+

X ≤ s∗

p−
Mp−

∨Mp+

. (3.42)

Therefore, Φ is bounded on every bounded subset of X.
(iii) Let un → u weakly in X and let lim infn→∞ Φ(un) ≤ Φ(u). Since Φ is se-

quentially weakly lower semi-continuous from (ii), we have Φ(u) ≤ lim infn→∞ Φ(un).
Thus, lim infn→∞ Φ(un) = Φ(u). Hence, there exists a subsequence {un′} of {un}
such that limn′→∞ Φ(un′) = lim infn→∞ Φ(un) = Φ(u). By Lemma 3.1, we see that
un′ → u strongly in X.

Now, we consider the properties of the derivative Φ′ of Φ.

Proposition 3.3. The mapping Φ′ : X → X∗ has the following properties.
(i) The mapping Φ′ is strictly monotone on X, bounded on every bounded subset

of X and coercive in the sense that

lim
∥u∥X→∞

⟨Φ′(u), u⟩X∗,X

∥u∥X
= ∞. (3.43)

(ii) The mapping Φ′ is of (S+)-type, that is,

un → u weakly in X and lim sup
n→∞

⟨Φ′(un), un − u⟩X∗,X ≤ 0

imply un → u strongly in X.
(iii) We can see that the mapping Φ′ : X → X∗ is a homeomorphim.
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Proof. (i) For a.e. x ∈ Ω, define φ(a) = 1
2S(x, |a|

2) for a ∈ Rd. First, it follows
from (2.25a) and (2.25b) that for a.e. x ∈ Ω, a function G(t) = S(x, t2) is a strictly
monotonically increasing and strictly convex function with respect to t ∈ [0,∞).
Indeed, G′(t) = 2tSs(x, t

2) ≥ 2s∗t
p(x)−1 > 0 for t > 0 from (2.25a) and

G′′(t) = 2(St(x, t
2) + 2t2Stt(x, t

2)) > 0, (3.44)

for t > 0 from (2.25b).
Thus, for any a, b ∈ Rd and 0 ≤ λ ≤ 1, we have

φ(λa+ (1− λ)b) ≤ S(x, (λ|a|+ (1− λ)|b|)2) ≤ λφ(a) + (1− λ)φ(b). (3.45)

Thus, φ is convex. Moreover, let a ̸= b and 0 < λ < 1. When

|λa+ (1− λ)b| < λ|a|+ (1− λ)|b|, (3.46)

since the function S(x, t2) is strictly monotonically increasing with respect to t, we
have

φ(λa+ (1− λ)b) =
1

2
S(x, |λa+ (1− λ)b|2)

<
1

2
S(x, (λ|a|+ (1− λ)|b|)2) ≤ λφ(a) + (1− λ)φ(b).

When |λa+(1−λ)b| = λ|a|+(1−λ)|b|, we see that a and b are linearly dependent
since a · b = |a||b|. We may assume b ̸= 0, so we can write a = cb. Since
c|b|2 = |a||b|, we see c ≥ 0 and c ̸= 1. Thus, we have |a| ̸= |b|. Since S(x, t2) is
strictly convex with respect to t, we have

S(x, |λa+(1−λ)b|2) = S(x, (λ|a|+(1−λ)|b|)2) < λS(x, |a|2)+(1−λ)S(x, t, |b|2).
(3.47)

Therefore, we have φ(λa+ (1− λ)b) < λφ(a) + (1− λ)φ(b).
Thereby, it follows from [30, Proposition 25.10] that φ′ is strictly monotone on

X, that is,

⟨φ′(a)− φ′(b),a− b⟩Rd,Rd > 0 for all a, b ∈ Rd with a ̸= b.

Since for u, v ∈ X, u ̸= v in X means that ∇u ̸= ∇v in Lp(·)(Ω), we have

⟨Φ′(u)− Φ′(v), u− v⟩X∗,X

=

∫
Ω

(
St(x, |∇u(x)|2)∇u(x)− St(x, |∇v(x)|2)∇v(x)

)
· (∇u(x)−∇v(x)dx > 0.

(3.48)

Thus, Φ is strictly monotone.
We show that Φ′ is bounded on every bounded subset of X. Let ∥u∥X ≤

M . Then, ρp(·)(|∇u|) ≤ M1 for some constant M1. By the Hölder inequality
(Proposition 2.2 (ii)),

|⟨Φ′(u), v⟩X∗,X | =
∣∣∣∣∫

Ω

St(x, |∇u(x)|2)∇u(x) ·∇v(x)dx

∣∣∣∣
≤ 2∥St(·, |∇u(·)|2)∇u(·)∥Lp′(·)(Ω)∥v∥X for all v ∈ X.
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Hence, ∥Φ′(u)∥X∗ ≤ 2∥St(x, |∇u|2)∇u∥Lp′(·)(Ω). Since

ρp′(·)(St(x, |∇u|2)∇u) =

∫
Ω

(St(x, |∇u(x)|2)|∇u(x)|)p
′(x)dx

≤
∫
Ω

(s∗|∇u(x)|p(x)−1)p
′(x)dx

≤ max{(s∗)(p
′)− , (s∗)(p

′)+}
∫
Ω

|∇u(x)|p(x)dx

≤ max{(s∗)(p
′)− , (s∗)(p

′)+}M1,

we have ∥Φ′(u)∥X∗ ≤ M2 for some constant M2.
We show that Φ′ is coercive. Since

⟨Φ′(u), u⟩X∗,X =

∫
Ω

St(x, |∇u(x)|2)|∇u(x)|2dx ≥ s∗

∫
Ω

|∇u(x)|p(x)dx

≥ s∗∥u∥p
−

X for ∥u∥X > 1 (3.49)

and p− > 1, we can see that Φ′ is coercive.
(ii) follows from [6, Proposition 9]. The proof consists of the reverse Hölder

inequality in which we use (2.25a)-(2.25c). Here, we omit the proof.
(iii) We note that Φ′ is coercive from (i) and clearly hemi-continuous, that is, for

any u, v, w ∈ X, the mapping [0, 1] ∋ τ 7→ ⟨Φ′(u+ τv), w⟩X∗,X is continuous. Since
Φ′ is strictly monotone from (i), Φ′ is injective. By the Browder-Minty theorem
(cf. [30, Theorem 26 A]), Φ′ is surjective. Thus, (Φ′)−1 exists. Since Φ′ is continuous,
it suffices to show that (Φ′)−1 : X∗ → X is continuous. Let fn → f inX∗ as n → ∞.
Define un = (Φ′)−1fn and u = (Φ′)−1f . Then, Φ′(un) = fn and Φ′(u) = f . We
derive that {un} is bounded in X. Indeed, if {un} is unbounded, there exists a
subsequence {un′} of {un} such that ∥un′∥X → ∞ as n′ → ∞. Hence, there exists
a constant C > 0 such that

⟨Φ′(un′), un′⟩X∗,X = ⟨fn′ , un′⟩X∗,X ≤ ∥fn′∥X∗∥un′∥X ≤ C∥un′∥X . (3.50)

This contradicts the coerciveness of Φ′.
Since {un} is bounded in a reflexive Banach space X, there exist a subsequence

{un′′} of {un} and u0 ∈ X such that un′′ → u0 weakly in X, so

lim
n′′→∞

⟨Φ′(un′′), un′′ − u0⟩X∗,X = lim
n′′→∞

⟨Φ′(un′′)− Φ′(u), un′′ − u0⟩X∗,X

= lim
n′′→∞

⟨fn′′ − f, un′′ − u0⟩X∗,X = 0.
(3.51)

Since Φ′ is of (S+)-type, we see un′′ → u0 strongly in X. Since Φ′ is continuous,
Φ′(un′′) = fn′′ → Φ′(u0) = f = Φ′(u). Hence, Φ′(u0) = Φ′(u). Since Φ′ is injective,
we see u = u0. By the convergent principle (cf. [30, Thereom 10.13 (i)]), the full
sequence un → u strongly in X.

3.2. The properties of the functionals J and K

In this subsection, we consider the functionals J and K defined by (3.6) and (3.7),
respectively.
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Proposition 3.4. Assume that (fi) and (gi) (i = 0, 1) hold. Then, the following
(i) and (ii) are verified.

(i) We see that J,K ∈ C1(X,R).
(ii) The mappings J ′,K ′ : X → X∗ are sequentially weakly-strongly continuous,

namely, if un → u weakly in X, then J ′(un) → J ′(u) and K ′(un) → K(u) strongly
in X∗, so J ′ and K ′ are compact operators. Moreover, the functionals J,K : X → R
are sequentially weakly continuous.

Proof. For brevity of notations, we write f = fi, g = gi, α = αi, β = βi, F = Fi

and G = Gi for i = 0, 1. If we put the functionals

F̂ (u) =

∫
Ω

F (x, u(x))dx and Ĝ(u) =

∫
Γ2

G(x, u(x))dσ for u ∈ X, (3.52)

it suffices to derive that F̂ and Ĝ satisfy (i) and (ii).

(i) Clearly, F̂ and Ĝ are Gâteaux differentiable at every u ∈ X and the Gâteaux

derivatives dF̂ , dĜ : X → X∗ are given by

dF̂ (u)(v) =

∫
Ω

f(x, u(x))v(x)dx and dĜ(u)(v) =

∫
Γ2

g(x, u(x))v(x)dσ (3.53)

for any v ∈ X.
We show that dF̂ , dĜ : X → X∗ are continuous. Let un → u in X. Then, by

Hölder inequality (Proposition 2.2 (ii)), we have

|dF̂ (un)(v)− dF̂ (u)(v)| =
∣∣∣∣∫

Ω

(f(x, un(x))− f(x, u(x)))v(x)dx

∣∣∣∣
≤ 2∥f(·, un(·))− f(·, u(·))∥Lα′(·)(Ω)∥v∥Lα(·)(Ω)

and

|dĜ(un)(v)− dĜ(u)(v)| =
∣∣∣∣∫

Γ2

(g(x, un(x))− g(x, u(x)))v(x)dσ

∣∣∣∣
≤ 2∥g(·, un(·))− g(·, u(·))∥Lβ′(·)(Γ2)

∥v∥Lβ(·)(Γ2).

Since α(x) < p∗(x) for all x ∈ Ω and β(x) < p∂(x) for all x ∈ Γ2, the embedding
mappings X ↪→ Lα(·)(Ω) and X ↪→ Lβ(·)(Γ2) are continuous, so there exist positive
constants C and D such that

∥v∥Lα(·)(Ω) ≤ C∥v∥X and ∥v∥Lβ(·)(Γ2) ≤ D∥v∥X for v ∈ X. (3.54)

Thus, we have

∥dF̂ (un)(v)− dF̂ (u)(v)∥X∗ ≤ 2C∥f(·, un(·))− f(·, u(·))∥Lα′(·)(Ω) (3.55)

and

∥dĜ(un)(v)− dĜ(u)(v)∥X∗ ≤ 2D∥g(·, un(·))− g(·, u(·))∥Lβ′(·)(Γ2)
. (3.56)

By Proposition 2.1 (iv), it suffices to show

ρα′(·)(f(·, un(·))− f(·, u(·))) =
∫
Ω

|f(x, un(x))− f(x, u(x))|α
′(x)dx → 0 (3.57)
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and

ρβ′(·),Γ2
(g(·, un(·))− g(·, u(·))) =

∫
Γ2

|g(x, un(x))− g(x, u(x))|β
′(x)dσ → 0, (3.58)

as n → ∞. Since α(x) < p∗(x) for all x ∈ Ω and the embedding map X ↪→
W 1,p(·)(Ω) ↪→ Lα(·)(Ω) is continuous, we have un → u in Lα(·)(Ω). By the con-
vergent principle (cf. [5, Appendix]), there exist a subsequence {un′} of {un} and
0 ≤ û ∈ Lα(·)(Ω) such that un′(x) → u(x) a.e. x ∈ Ω as n′ → ∞ and |un′(x)| ≤
|û(x)| for a.e. x ∈ Ω and all n′. Since f is a Carathéodory function, |f(x, un′(x))−
f(x, u(x))|α′(x) → 0 a.e. x ∈ Ω as n′ → ∞ and from (fi) with i = 0, 1,

|f(x, un′(x))− f(x, u(x))|α
′(x) ≤ 2(α

′)+−1(|f(x, un′(x)|α
′(x) + |f(x, u(x))|α

′(x))

≤ C1(1 + |un′(x)|α(x) + |u(x)|α(x))
≤ C1(1 + |û(x)|α(x) + |u(x)|α(x)).

The last term belongs to L1(Ω) and is independent of n′. By the Lebesgue domi-
nated convergence theorem,

ρα′(·)(f(·, un′(·))− f(·, u(·))) → 0 as n′ → ∞. (3.59)

By the convergent principle (cf. [30, Theorem 10.13 (i)]), for the full sequence {un},

ρα′(·)(f(·, un(·))− f(·, u(·))) → 0 as n → ∞. (3.60)

Similarly, since β(x) < p∂(x) for all x ∈ Γ2, the embedding map X ↪→ W 1,p(·)(Ω) ↪→
Lβ(·)(Γ2) is continuous, we can derive

ρβ′(·),Γ2
(g(·, un(·))− g(·, u(·))) → 0 as n → ∞. (3.61)

Thus, F̂ and Ĝ are Fréchet differentiable and the Fréchet derivatives F̂ ′ and Ĝ′

satisfy F̂ ′ = dF̂ and Ĝ′ = dĜ, so F̂ , Ĝ ∈ C1(X,R).
(ii) Since α(x) < p∗(x) for all x ∈ Ω and β(x) < p∂(x) for all x ∈ Γ2, it

follows from Proposition 2.3 (iii) and Proposition 2.7 that W 1,p(·)(Ω) ↪→ Lα(·)(Ω)
and W 1,p(·)(Ω) ↪→ Lβ(·)(Γ2) are compact embedding mappings. Let un → u weakly
in X, so weakly in W 1,p(·)(Ω). Then, un → u strongly in Lα(·)(Ω) and in Lβ(·)(Γ2).

Repeating the arguments of the proof of (i), we see F̂ ′(un) → F̂ ′(u) and Ĝ′(un) →
Ĝ′(u) strongly in X∗, so F̂ ′ and Ĝ′ are sequentially weakly-strongly continuous, so
are compact operators.

We show that F̂ : X → R is sequentially weakly continuous. Let un → u weakly
in X. By the mean value theorem,

F̂ (un)− F̂ (u) = ⟨(F̂ ′(u+ θn(un − u)), un − u⟩X∗,X (0 < θn < 1). (3.62)

Then, u + θn(un − u) → u weakly in X. Since F̂ ′ is weakly-strongly continuous,

F̂ ′(u+ θn(un − u)) → F̂ ′(u) strongly in X∗. Therefore,

⟨F̂ ′(u+ θn(un − u)), un − u⟩X∗,X → 0 as n → ∞. (3.63)

Hence, F̂ (un) → F̂ (u) as n → ∞.

Similarly, we can show Ĝ(un) → Ĝ(u) as n → ∞.
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4. Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1. Let Ω be a bounded domain of
Rd with a C0,1-boundary Γ satisfying (1.4), and assume that p ∈ P log

+ (Ω) satisfies
(3.10).

We apply the following result of [25, Theorem 2].

Theorem 4.1. Let B be a separable, reflexive and real Banach space. Assume that
a functional Φ : B → R is coercive, sequentially weakly lower semi-continuous, Φ
is a C1-functional belonging to WB, bounded on every bounded subset of B and the
derivative Φ′ : B → B∗ admits a continuous inverse (Φ′)−1 : B∗ → B. Moreover,
assume that J : B → R is a C1-functional with a compact derivative, and assume
that Φ has a strictly local minimum u0 ∈ B with Φ(u0) = J(u0) = 0. Finally, put

α = max

{
0, lim sup

∥u∥→∞

J(u)

Φ(u)
, lim sup

u→u0

J(u)

Φ(u)

}
, (4.1)

β = sup
u∈Φ−1((0,∞))

J(u)

Φ(u)
, (4.2)

and assume α < β. Then, for each compact interval [a, b] ⊂
(

1
β ,

1
α

)
(with the

conventions 1
0 = ∞, 1

∞ = 0), there exists r > 0 with the following property: for
every λ ∈ [a, b] and every C1-functional K : B → R with a compact derivative, there
exists δ > 0 such that for each µ ∈ [0, δ], the equation Φ′(u) = λJ ′(u) +µK ′(u) has
at least three solutions whose norms are less than r.

Proof. We note that if u ∈ X is a critical point of the functional I, that is,
I ′(u) = Φ′(u)− λJ ′(u)− µK ′(u) = 0, then u is a weak solution of (1.1). Under the
hypotheses of Theorem 3.1, we derive the hypotheses of Theorem 4.1 with B = X
defined by (2.22) and the functionals Φ, J and K defined by (3.5), (3.6) and (3.7).
Since Φ(u) ≥ 0 for all u ∈ X, and Φ(u) = 0, if and only if u = 0, Φ has a strictly
local minimum u = 0, and by the definitions of F0 and G0, clearly J(0) = 0, so
Φ(0) = J(0) = 0. Moreover, the hypotheses on Φ and J follows from the results of
Section 3.

Fix ε > 0. From (3.11) and (3.12), there exist ρ1 and ρ2 with 0 < ρ1 < 1 < ρ2
such that

F0(x, t) ≤ ε|t|p
+

for all (x, t) ∈ Ω× [−ρ1, ρ1], (4.3)

F0(x, t) ≤ ε|t|p
−

for all (x, t) ∈ Ω×
(
R \ [−ρ2, ρ2]

)
(4.4)

and

G0(x, t) ≤ ε|t|p
+

for all (x, t) ∈ Γ2 × [−ρ1, ρ1], (4.5)

G0(x, t) ≤ ε|t|p
−

for all (x, t) ∈ Γ2 ×
(
R \ [−ρ2, ρ2]

)
. (4.6)

Thus, we have

F0(x, t) ≤ ε|t|p
+

for all (x, t) ∈ Ω×
(
R \ ([−ρ2,−ρ1] ∪ [ρ1, ρ2])

)
(4.7)

and

G0(x, t) ≤ ε|t|p
+

for all (x, t) ∈ Γ2 ×
(
R \ ([−ρ2,−ρ1] ∪ [ρ1, ρ2])

)
. (4.8)
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On the other hand, since f0 and g0 satisfy (f0) and (g0) respectively, we have

|F0(x, t)| ≤ C1,0|t|+
C2,0

α0(x)
|t|α0(x) ≤ C1,0|t|+

C2,0

α−
0

|t|α0(x) for (x, t) ∈ Ω× R (4.9)

and

|G0(x, t)| ≤ D1,0|t|+
D2,0

β0(x)
|t|β0(x) ≤ D1,0|t|+

D2,0

β−
0

|t|β(x) for (x, t) ∈ Γ2×R. (4.10)

Hence, F0 is bounded on each bounded subset of Ω×R and G0 is bounded on each
bounded subset of Γ2 × R .

From hypothesis (3.10),

p+ <
dp−

d− p−
≤ dp(x)

d− p(x)
= p∗(x) if p(x) < d (4.11)

and

p+ <
(d− 1)p−

d− p−
≤ (d− 1)p(x)

d− p(x)
= p∂(x) if p(x) < d. (4.12)

If we choose q ∈ R such that p+ < q < p∂(x) for all x ∈ Γ2 and p+ < q < p∗(x) for
all x ∈ Ω, then we have

F0(x, t) ≤ ε|t|p
+

+ c|t|q for all (x, t) ∈ Ω× R (4.13)

and
G0(x, t) ≤ ε|t|p

+

+ c|t|q for all (x, t) ∈ Γ2 × R (4.14)

for some constant c > 0. Since the embedding mappings X ↪→ Lp+

(Ω), Lp+

(Γ2),
Lq(Ω), Lq(Γ2) are continuous, there exist positive constants Cp+ and Cq such that

∥u∥Lp+ (Ω) ≤ Cp+∥u∥X , ∥u∥Lp+ (Γ2)
≤ Cp+∥u∥X ,

∥u∥Lq(Ω) ≤ Cq∥u∥X and ∥u∥Lq(Γ2) ≤ Cq∥u∥X (4.15)

for all u ∈ X. Thus, there exists a constant c1 > 0 such that

J(u) =

∫
Ω

F0(x, u(x))dx+

∫
Γ2

G0(x, u(x))dσ

≤ ε

∫
Ω

|u(x)|p
+

dx+ c1

∫
Ω

|u(x)|qdx+ ε

∫
Γ2

|u(x)|p
+

dσ + c1

∫
Γ2

|u(x)|qdσ

≤ 2(Cp+)p
+

ε∥u∥p
+

X + 2c1(Cq)
q∥u∥qX .

When ∥u∥X < 1, it follows from Proposition 2.1 that

J(u)

Φ(u)
≤

2(Cp+)p
+

ε∥u∥p
+

X + 2c(Cq)
q∥u∥qX

s∗
p+ ∥u∥p

+

X

. (4.16)

Since q > p+, we have

lim sup
u→0

J(u)

Φ(u)
≤

2p+(Cp+)p
+

s∗
ε. (4.17)
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On the other hand, since the embedding mappings X ↪→ Lp−
(Ω), Lp−

(Γ2) are
continuous, there exists a constant Cp− > 0 such that

∥u∥Lp− (Ω) ≤ Cp−∥u∥X and ∥u∥Lp− (Γ2)
≤ Cp−∥u∥X for all u ∈ X. (4.18)

Since F and G are bounded on each bounded subset of Ω×R and Γ2×R respectively,
when ∥u∥X > 1, it follows from (4.4) and (4.6) that there exists a constant C1 > 0
such that

J(u) =

∫
{x∈Ω;|u(x)|≤ρ2}

F0(x, u(x))dx+

∫
{x∈Ω;|u(x)|>ρ2}

F0(x, u(x))dx

+

∫
{x∈Γ2;|u(x)|≤ρ2}

G0(x, u(x))dσ +

∫
{x∈Γ2;|u(x)|>ρ2}

G0(x, u(x))dσ

≤ 2C1 + 2ε(Cp−)p
−
∥u∥p

−

X .

Hence,

lim sup
∥u∥X→∞

J(u)

Φ(u)
≤

2p+(Cp−)p
−

s∗
ε. (4.19)

Since ε > 0 is arbitrary, it follows from (4.17) and (4.19) that

max

{
lim sup
u→0

J(u)

Φ(u)
, lim sup
∥u∥→∞

J(u)

Φ(u)

}
≤ 0. (4.20)

Therefore, we have α = 0 in Theorem 4.1. By hypothesis (3.13), we have β > 0 in
(4.2). Thus, all the hypotheses of Theorem 4.1 hold. If we put θ = 1/β, then the
conclusion of Theorem 3.1 is verified. This completes the proof of Theorem 3.1.

Now, we state a corollary of Theorem 3.2. Assume that
(f0)

′ A Carathéodory function f0 : Ω× R → R satisfies

|f0(x, t)| ≤ C1,0 + C2,0|t|α0(x)−1 for a.e. x ∈ Ω and all t ∈ R, (4.21)

where C1,0 and C2,0 are non-negative constants, and α0 ∈ P log
+ (Ω) satisfies

α+
0 < p− and lim

t→0

|f0(x, t)|
|t|p+−1

= 0 uniformly for a.e. x ∈ Ω. (4.22)

(g0)
′ A Carathéodory function g0 : Γ2 × R → R satisfies

|g0(x, t)| ≤ D1,0 +D2,0|t|β0(x)−1 for a.e. x ∈ Γ2 and all t ∈ R, (4.23)

where D1,0 and D2,0 are non-negative constants, and β0 ∈ P log
+ (Ω) satisfies

β+
0 < p− and lim

t→0

|g0(x, t)|
|t|p+−1

= 0 uniformly for a.e. x ∈ Γ2. (4.24)

(h) There exists δ0 > 0 such that

f0(x, t) > 0 for (x, t) ∈ Ω× (0, δ0] and g0(x, t) ≥ 0 for (x, t) ∈ Γ2 × (0, δ0] (4.25)

or

f0(x, t) ≥ 0 for (x, t) ∈ Ω× (0, δ0] and g0(x, t) > 0 for (x, t) ∈ Γ2 × (0, δ0]. (4.26)

Then, we obtain the following corollary of Theorem 3.1.
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Corollary 4.1. Let Ω be a bounded domain with a C0,1-boundary Γ satisfying (1.4)

and let p ∈ P log
+ (Ω) satisfy (3.10). Assume that (f0)

′, (g0)
′ and (h) hold. Then,

the conclusion of Theorem 3.1 holds, that is, problem (1.1) has at least three weak
solutions.

Proof. From (4.22), for any ε > 0, there exists δ > 0 such that if |t| < δ, then

|f0(x, t)| ≤ ε|t|p+−1. Hence, for |t| < δ, |F0(x, t)| ≤ ε
p+ |t|p

+

, we have

lim sup
t→0

ess supx∈Ω F0(x, t)

|t|p+ ≤ ε

p+
. (4.27)

Since ε > 0 is arbitrary, we have

lim sup
t→0

ess supx∈Ω F0(x, t)

|t|p+ ≤ 0. (4.28)

On the other hand, since f0 is bounded on each bounded subset of Ω× R from
(f0)

′, there exists a constant C > 0 such that |f0(x, t)| ≤ C for (x, t) ∈ Ω× [−1, 1].
When |t| > 1,

|f0(x, t)| ≤ C0,1 + C0,2|t|α0(x)−1 ≤ C0,1 + C0,2|t|α
+
0 −1, (4.29)

so we have |f0(x, t)| ≤ C ′
0,1 + C0,2|t|α

+
0 −1. Thus, |F0(x, t)| ≤ C ′

0,1|t|+ C ′
0,2|t|α

+
0 for

some constants C ′
0,1 and C ′

0,2. Therefore, since α+
0 < p−,

lim sup
|t|→∞

ess supx∈Ω F0(x, t)

|t|p− ≤ 0, (4.30)

so (3.11) holds.

Similarly, using (g0)
′, we can derive

lim sup
t→0

ess supx∈Γ2
G0(x, t)

|t|p+ ≤ 0 and lim sup
|t|→∞

ess supx∈Γ2
G0(x, t)

|t|p− ≤ 0, (4.31)

Therefore, (3.12) holds.

Under (h), since we can easily choose 0 ̸≡ φ ∈ X with 0 ≤ φ(x) ≤ δ0 such that∫
Ω

F0(x, φ(x))dx+

∫
Γ2

G0(x, φ(x))dσ > 0, (4.32)

(3.13) holds. Thus, all the hypotheses of Theorem 3.1 hold, so the conclusion of
Corollary 4.1 follows from Theorem 3.1.
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[24] M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degen-
erate problem arising in the theory of electrorheological fluids, Proceedings of
the Royal Society A. Mathematical, Physical and Engineering Sciences, 2006,
462(2073), 2625–2641.

[25] B. Ricceri, A further three critical points theorem, Nonlinear Analysis: Theory,
Methods & Applications, 2009, 71(9), 4151–4157.
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[29] Z. Yücedağ, Existence Results for Steklov Problem with Nonlinear Boundary
Condition, Middle East Journal of Science, 2019, 5(2), 146–154.

[30] E. Zeidler, Nonlinear Functional Analysis and its Applications I, II/B: Non-
linear Monotone Operators, Springer, New York, 1986.

[31] D. Zhao, W. Qing and X. Fan, On Generalized Orlicz Space Lp(x)(Ω), Journal
of Gansu Sciences, 1996, 9(2), 1–7.

[32] V. V. Zhikov, Averaging of Functionals of the Calculus of Variation and Elas-
ticity Theory, Mathematics of the USSR-Izvestiya, 1987, 29(1), 33–66.


	Introduction
	Preliminaries
	Variable exponent Lebesgue and Sobolev spaces
	A Carathéodory function
	The Nemytskii operator

	Setting of the problem and the main theorem
	The property of 
	The properties of the functionals J and K

	Proof of Theorem 3.1

