
Journal of Nonlinear Modeling and Analysis http://jnma-online.com

Volume 6, Number 1, March 2024, 56–70 DOI:10.12150/jnma.2024.56

Positive Solutions for Third Order Three-Point
Boundary Value Problems with p-Laplacian∗

Xingfang Feng1,2†, Hanying Feng3

Abstract In this paper, the existence of positive solutions of the following
third-order three-point boundary value problem with p-Laplacian (ϕp(u

′′(t)))′ + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = αu(η), u(1) = αu(η), u′′(0) = 0,

is studied, where ϕp(s) = |s|p−2s, p > 1. By using the fixed point index
method, we establish sufficient conditions for the existence of at least one or
at least two positive solutions for the above boundary value problem. The
main result is demonstrated by providing an example as an application.
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index, p-Laplacian operator
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1. Introduction

The purpose of this paper is to study the existence of positive solutions for the
following third-order three-point boundary value problem (BVP for short) with
p-Laplacian

(ϕp(u
′′(t)))′ + f(t, u(t)) = 0, t ∈ (0, 1), (1.1)

u(0) = αu(η), u(1) = αu(η), u′′(0) = 0, (1.2)

where ϕp(s) = |s|p−2s, p > 1, ϕ−1
p = ϕq,

1

p
+

1

q
= 1, 0 < α, η < 1.

There has been an extensive study on boundary value problems with diverse
boundary conditions via many methods [1, 11, 21]. The equation with p-Laplacian
operator arises in the modeling of different physical and natural phenomena, non-
Newtonian mechanics [4, 10], combustion theory [18], population biology [16, 17]
and nonlinear flow laws [5, 13]. Therefore, there exist a very lager number of
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papers devoted to the existence of solutions to the p-Laplacian boundary value
problems with various boundary conditions, which have been studied by many au-
thors [7, 14, 15, 19, 20] and references therein. Iyase [8] proved the existence of so-
lutions for a third-order multipoint boundary value problem at resonance by using
the coincidence degree arguments. Additionally, Iyase and Imaga [9] applied Leray-
Schauder continuation principle to establish at least one solution to the third-order
p-Laplacian boundary value problem.

Recently, Li [12] has studied the existence of positive solutions for the third-order
boundary value problem with p-Laplacian operator.

(ϕp(u
′′(t)))′ + f(t, u(t), u′(t), u′′(t)) = 0, t ∈ (0, 1),

au(0)− bu′(0) = 0, cu(1) + du′(1) = 0, u′′(0) = 0,
(1.3)

where ϕp(s) = |s|p−2s, p > 1. By using the fixed point theorem of Krasnosel,skii,
the author established the existence results for positive solutions to (1.3).

Motivated by the above works, our purpose here is to give existence of positive
solutions for a third-order three-point boundary value problem with p-Laplacian
operator. In this paper, we construct a Green function and study its properties,
and then transform BVP (1.1) and (1.2) into an equivalent integral equation. Next,
applying the fixed point index theorem, we establish the existence of at least one
or at least two positive solutions for the above boundary value problem. For con-
venience, we list the following assumptions:

(H1) f : [0, 1]× [0,∞) → [0,∞) is continuous;
(H2) 0 < α, η < 1.

2. Preliminaries and several important lemmas

In this section, we provide some basic concepts and properties of fixed point index
for compact maps.

Let E = C[0, 1], C+[0, 1] = {x ∈ C[0, 1]| x(t) ≥ 0, t ∈ [0, 1]}, then E is a Banach
space with norm ∥u∥ = max

t∈[0,1]
|u(t)|.

Definition 2.1.( [6]) Let E be a real Banach space. Let P be a nonempty, convex
closed set in E. We say that P is a cone if it satisfies the following properties:
(i) λu ∈ P for u ∈ P, λ ≥ 0;
(ii) u,−u ∈ P implies u = θ (θ denotes the null element of E).

If P ⊂ E is a cone, we denote the order induced by P on E by ≤. For u, v ∈ P ,
we write u ≤ v if and only if v − u ∈ P .

Lemma 2.1. Assume that (H1) holds and α ̸= 1. Then for any x ∈ C+[0, 1], the
problem

(ϕp(u
′′(t)))′ + f(t, x(t)) = 0, t ∈ (0, 1), (2.1)

u(0) = αu(η), u(1) = αu(η), u′′(0) = 0 (2.2)

has the unique solution

u(t) =

∫ 1

0

G(t, s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds+
α

1− α

∫ 1

0

G(η, s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds,

(2.3)
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where

G(t, s) =

 t(1− s), t ≤ s,

s(1− t), s ≤ t.
(2.4)

Proof. Integrating the equation (2.1) over the interval [0, t] for t ∈ [0, 1], we obtain

ϕp(u
′′(t))− ϕp(u

′′(0)) = −
∫ t

0

f(s, x(s))ds,

from the boundary condition (2.2) we get

ϕp(u
′′(t)) = −

∫ t

0

f(s, x(s))ds,

which implies

u′′(t) = −ϕq(

∫ t

0

f(s, x(s))ds). (2.5)

By integration of (2.5), it follows that

u′(t) = u′(0)−
∫ t

0

ϕq

(∫ s

0

f(τ, x(τ))dτ

)
ds,

u(t) = u(0) + u′(0)t−
∫ t

0

(t− s)ϕq

(∫ s

0

f(τ, x(τ))dτ

)
ds.

(2.6)
Using the boundary condition (2.2), we can easily get

u(0) =
α

1− α

[
η

∫ 1

0

(1− s)ϕq

(∫ s

0

f(τ, x(τ))dτ

)
ds

−
∫ η

0

(η − s)ϕq

(∫ s

0

f(τ, x(τ))dτ

)
ds

]
,

u′(0) =

∫ 1

0

(1− s)ϕq

(∫ s

0

f(τ, x(τ))dτ

)
ds.

(2.7)
By (2.6) and (2.7), we have

u(t) =
α

1− α

[
η

∫ 1

0

(1− s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds

−
∫ η

0

(η − s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds

]
+ t

∫ 1

0

(1− s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds−
∫ t

0

(t− s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds

=

∫ t

0

s(1− t)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds+

∫ 1

t

t(1− s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds

+
α

1− α

[∫ η

0

s(1− η)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds

+

∫ 1

η

η(1− s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds

]
.

Finally

u(t) =

∫ 1

0

G(t, s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds+
α

1− α

∫ 1

0

G(η, s)ϕq(

∫ s

0

f(τ, x(τ))dτ)ds,
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which achieves the proof of Lemma 2.1.
In order to discuss the existence of positive solutions, we need some properties

of functions G(t, s).

Lemma 2.2. For G(t, s) given as in (2.4), we have the following results:

(i) 0 ≤ G(t, s) ≤ G(s, s), for t ∈ [0, 1] and s ∈ [0, 1],

(ii) G(t, s) ≥ 1

4
G(s, s), for t ∈ [

1

4
,
3

4
] and s ∈ [0, 1].

Proof. (i) According to the definition of G(t, s), we can easily obtain

0 ≤ G(t, s) ≤ G(s, s), for t ∈ [0, 1] and s ∈ [0, 1].

(ii) For all t ∈ [
1

4
,
3

4
] and s ∈ [0, 1], from (2.4), we have

G(t, s)

G(s, s)
=


t(1− s)

s(1− s)
=

t

s
≥ t ≥ 1

4
, t ≤ s,

s(1− t)

s(1− s)
=

1− t

1− s
≥ 1− t ≥ 1

4
, s ≤ t.

Therefore, G(t, s) ≥ 1

4
G(s, s), for t ∈ [

1

4
,
3

4
] and s ∈ [0, 1].

Let P = {x ∈ E| x(t) ≥ 0, t ∈ [0, 1]}. Then P is a cone in E. For ∀ u ∈ P , we
define an operator T by

(Tu)(t) =

∫ 1

0

G(t, s)ϕq(

∫ s

0

f(τ, u(τ))dτ)ds

+
α

1− α

∫ 1

0

G(η, s)ϕq(

∫ s

0

f(τ, u(τ))dτ)ds.

Lemma 2.3. Assume that (H1) and (H2) hold. Then the operator T : P → P is
completely continuous.

Proof. From (H1), (H2), Lemma 2.2 and the definition of T , it is easy to prove
that T : P → P . Now we show that T : P → P is completely continuous.

Let Ω ⊂ P be a bounded set. Then there exists R > 0 satisfying ∥u∥ ≤ R, for
any u ∈ Ω. Set M = max{f(t, u)|t ∈ [0, 1], u ∈ Ω}. For any u ∈ Ω, we have

(Tu)(t)|

=

∣∣∣∣∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds+

α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ)

)
ds

∣∣∣∣
≤
∣∣∣∣∫ 1

0

G(t, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds+

α

1− α

∫ 1

0

G(η, s)ϕq

(∫ 1

0

f(τ, u(τ)

)
ds

∣∣∣∣
≤
∫ 1

0

G(s, s)ϕq(M)ds+
α

1− α

∫ 1

0

G(s, s)ϕq(M)ds =
ϕq(M)

1− α

∫ 1

0

G(s, s)ds,

which implies that T (Ω) is uniformly bounded. Further for any u ∈ Ω and t ∈ [0, 1],
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we have

|(Tu)′(t)| =
∣∣∣∣−∫ t

0

sϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds+

∫ 1

t

(1− s)ϕq

(∫ s

0

f(τ, u(τ)

)
ds

∣∣∣∣
≤
∫ t

0

sϕq

(∫ 1

0

f(τ, u(τ)

)
dτ)ds+

∫ 1

t

(1− s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤
∫ 1

0

sϕq(M)ds+

∫ 1

0

(1− s)ϕq(M)ds = ϕq(M).

Hence ∥(Tu)′∥ ≤ ϕq(M). For any 0 ≤ t1 ≤ t2 ≤ 1 and u ∈ Ω,

|(Tu)(t1)− (Tu)(t2)| =
∣∣∣∣∫ t2

t1

(Tu)′(t)dt

∣∣∣∣ ≤ ∫ t2

t1

|(Tu)′(t)|dt ≤ ϕq(M)|t2 − t1|.

Therefore, we can easily prove that T (Ω) is equi-continuous, that is, T (Ω) is a
relatively compact set according to the Ascoli-Arzela theorem. In view of the con-
tinuity of f and the Lebesgue dominated convergence theorem, we know that T is
continuous on Ω. Thus T : P → P is completely continuous.

To obtain positive solutions of BVPs (1.1) and (1.2), we require some knowledge
of the classical fixed point index for compact maps, and the index has the following
properties.

Theorem 2.1 ( [6]). Let K be a closed convex set in a Banach space E and let D
be a bounded open set such that Dk := D ∩K ̸= ∅. Let T : Dk → K be a compact
map. Suppose that x ̸= Tx for all x ∈ ∂Dk.
(A1) (Existence) If i(T,Dk,K) ̸= 0, then T has a fixed point in Dk.
(A2) (Normalization) If u ∈ Dk, then i(û, Dk,K) = 1, where û(x) = u for x ∈ Dk.
(A3) (Homotopy) Let µ : [0, 1] ×Dk → K be a compact map such that x ̸= µ(t, x)
for x ∈ ∂Dk and t ∈ [0, 1]. Then
i(µ(0, ·), Dk,K) = i(µ(1, ·), Dk,K).
(A4) (Additivity) If U1 and U2 are disjoint relatively open subsets of Dk such that
x ̸= Tx for x ∈ Dk\(U1 ∪ U2), then
i(T,Dk,K) = i(T,U1,K) + i(T,U2,K),
where i(T,Uj ,K) = i(T |Uj , Uj ,K).

Theorem 2.2 ( [2], [3]). Let P be a cone in a Banach space E. For q > 0, define
Ωq = {x ∈ P | ∥x∥ < q}. Assume that T : Ωq → P is a compact map such that
x ̸= Tx for x ∈ ∂Ωq.
(i) If ∥x∥ ≤ ∥Tx∥ for x ∈ ∂Ωq, then i(T,Ωq, P ) = 0;
(ii) If ∥x∥ ≥ ∥Tx∥ for x ∈ ∂Ωq, then i(T,Ωq, P ) = 1.

Now, for the sake of convenience, we use the following notations. Let

f0 = lim
u→0+

sup max
t∈[0,1]

f(t, u)

ϕp(u)
, f∞ = lim

u→∞
sup max

t∈[0,1]

f(t, u)

ϕp(u)
,

f0 = lim
u→0+

inf min
t∈[ 14 ,

3
4 ]

f(t, u)

ϕp(u)
, f∞ = lim

u→∞
inf min

t∈[ 14 ,
3
4 ]

f(t, u)

ϕp(u)
,

l = 4ρ

(∫ 3
4

1
4

G(
1

2
, s)(s− 1

4
)q−1ds

)−1

(ρ > 1),

m = (1− α)

(∫ 1

0

s(1− s)ds

)−1

= 6(1− α).
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3. The main results and proofs

Now, we give our results for the existence of positive solutions of BVPs (1.1) and
(1.2).

Theorem 3.1. Suppose that (H1) and (H2) hold and there exist different constants

b, c > 0 with b < min

{
m

l
,
1

4

}
c. If the following conditions hold,

(H3) f(t, u) ≥ ϕp(lb), for
1

4
≤ t ≤ 3

4
, (1− α)b ≤ u ≤ 4b;

(H4) f(t, u) ≤ ϕp(mc), for 0 ≤ t ≤ 1, 0 ≤ u ≤ c.

Then the BVPs (1.1) and (1.2) have at least one positive solution u∗ with ∥u∗∥ ≤ c
and min

t∈[ 14 ,
3
4 ]
u∗(t) > (1− α)b.

Proof. For any u ∈ P and t ∈ [0, 1], from Lemma 2.2, we obtain

(Tu)(t)

=

∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds+

α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≤
∫ 1

0

G(s, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds+

α

1− α

∫ 1

0

G(s, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

=
1

1− α

∫ 1

0

G(s, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds.

Thus,

∥Tu∥ ≤ 1

1− α

∫ 1

0

G(s, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds.

Further, for u ∈ P and t ∈ [
1

4
,
3

4
], from lemma 2.2 we get

min
t∈[ 14 ,

3
4 ]
(Tu)(t) = min

t∈[ 14 ,
3
4 ]

[∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

]

≥ min
t∈[ 14 ,

3
4 ]

∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥1

4

∫ 1

0

G(s, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds ≥ 1− α

4
∥Tu∥.
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If u ∈ P c = {u ∈ P | ∥u∥ ≤ c}, then 0 ≤ u(t) ≤ c for t ∈ [0, 1]. From (H4), we have

∥Tu∥ = max
t∈[0,1]

|(Tu)(t)|

= max
t∈[0,1]

[∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

]

≤
∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

=
1

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α
·mc ·

∫ 1

0

G(s, s)ds = c.

Hence, T : P c → P c and

min
t∈[ 14 ,

3
4 ]
(Tu)(t) ≥ 1− α

4
∥Tu∥, ∀u ∈ P c. (3.1)

Next, for (1−α)b ≤ u(t) ≤ 4b, t ∈ [
1

4
,
3

4
], by (H3) we know that f(t, u) ≥ ϕp(lb)

for t ∈ [
1

4
,
3

4
] and then we have

(Tu)

(
1

2

)
=

∫ 1

0

G

(
1

2
, s

)
ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥
∫ 1

0

G

(
1

2
, s

)
ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G

(
1

2
, s

)
ϕq

(∫ s

1
4

f(τ, u(τ))dτ

)
ds

≥lb

∫ 3
4

1
4

G

(
1

2
, s

)(
s− 1

4

)q−1

ds = 4ρb > 4b,

which implies ∥Tu∥ > 4b.

Consequently for (1− α)b ≤ u(t) ≤ 4b, t ∈ [
1

4
,
3

4
], we have

min
t∈[ 14 ,

3
4 ]
(Tu)(t) ≥ 1− α

4
∥Tu∥ >

1− α

4
× 4b = (1− α)b. (3.2)
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Now we can conclude from Theorem 2.1, (3.1) and (3.2) that T has at least one
nonzero fixed point. In fact, let U = {x ∈ P c| min

t∈[ 14 ,
3
4 ]
x(t) > (1− α)b}. Evidently, U

is a nonempty bounded, convex open set (for 4b ∈ U) in P c.
Firstly we prove Tx ̸= x for x ∈ ∂U. Suppose that there is x0 ∈ ∂U such that

Tx0 = x0, then we have min
t∈[ 14 ,

3
4 ]
x0(t) = (1− α)b and either (i) x0 ∈ {x ∈ P c| ∥x∥ ≤

4b, min
t∈[ 14 ,

3
4 ]
x(t) ≥ (1− α)b} or (ii) x0 ∈ {x ∈ P c| ∥x∥ > 4b, min

t∈[ 14 ,
3
4 ]
x(t) ≥ (1− α)b}.

For case (i), we know that (1− α)b ≤ x0(t) ≤ 4b for t ∈ [
1

4
,
3

4
]. From (3.2), we

have

(1− α)b = min
t∈[ 14 ,

3
4 ]
x0(t) = min

t∈[ 14 ,
3
4 ]
(Tx0)(t) > (1− α)b.

This is a contradiction.
For case (ii), by (3.1), we get

(1− α)b = min
t∈[ 14 ,

3
4 ]
x0(t) = min

t∈[ 14 ,
3
4 ]
(Tx0)(t) ≥

1− α

4
∥Tx0∥ =

1− α

4
∥x0∥ > (1− α)b.

This is a contradiction. Hence, Tx ̸= x for x ∈ ∂U. Therefore, i(T,U, P c) is
meaningful.

Secondly, we take u0 ∈ P such that min
t∈[ 14 ,

3
4 ]
u0(t) > (1 − α)b, ∥u0∥ ≤ 4b. Set

µ(t, x) = tu0 + (1 − t)Tx, and then µ : [0, 1] × U → P c is completely continu-
ous. Suppose that there is (t0, x0) ∈ [0, 1] × ∂U such that µ(t0, x0) = x0. Then
min

t∈[ 14 ,
3
4 ]
x0(t) = (1− α)b.

We distinguish two cases: (i) If ∥Tx0∥ > 4b, then by (3.1), we get min
t∈[ 14 ,

3
4 ]
(Tx0)(t)

≥ 1− α

4
∥Tx0∥ > (1− α)b. Hence,

(1− α)b = min
t∈[ 14 ,

3
4 ]
x0(t) = min

t∈[ 14 ,
3
4 ]
[t0u0(t) + (1− t0)(Tx0)(t)]

≥ min
t∈[ 14 ,

3
4 ]
t0u0(t) + min

t∈[ 14 ,
3
4 ]
(1− t0)(Tx0)(t)

>t0(1− α)b+ (1− t0)(1− α)b = (1− α)b.

This is a contradiction.
(ii) If ∥Tx0∥ ≤ 4b, then we obtain

∥x0∥ =∥t0u0 + (1− t0)Tx0∥ ≤ t0∥u0∥+ (1− t0)∥Tx0∥ ≤ t0 · 4b+ (1− t0) · 4b = 4b.

That is, (1− α)b ≤ x0(t) ≤ 4b for t ∈ [
1

4
,
3

4
], thus, we have by (3.2)

(1− α)b = min
t∈[ 14 ,

3
4 ]
x0(t) = min

t∈[ 14 ,
3
4 ]
[t0u0(t) + (1− t0)(Tx0)(t)]

≥ min
t∈[ 14 ,

3
4 ]
t0u0(t) + min

t∈[ 14 ,
3
4 ]
(1− t0)(Tx0)(t)

>t0(1− α)b+ (1− t0)(1− α)b = (1− α)b.
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This is a contradiction. So we have µ(t, x) ̸= x for (t, x) ∈ [0, 1] × ∂U . Finally,
applying (A2) and (A3) in Theorem 2.1, we get

i(T,U, P c) = i(u0, U, P c) = 1.

It follows from (A1) in Theorem 2.1 that T has a fixed point u∗ ∈ U . Further,
min

t∈[ 14 ,
3
4 ]
u∗(t) > (1− α)b, ∥u∗∥ ≤ c. That is, u∗ is a nonzero fixed point of T in P c.

That is to say, BVPs (1.1) and (1.2) have at least one positive solution.

Theorem 3.2. Suppose that (H1) and (H2) hold. If the following conditions hold,

(H5) f0 = f∞ = ∞;
(H6) there exists a constant ρ1 > 0 such that

f(t, u) < ϕp(mρ1), fort ∈ [0, 1], u ∈ [0, ρ1].

Then, BVPs (1.1) and (1.2) have at least two positive solutions u1 and u2 such that
0 < ∥u1∥ < ρ1 < ∥u2∥.

Proof. Define P1 = {u|u ∈ P, min
t∈[ 14 ,

3
4 ]
u(t) ≥ 1− α

4
∥u∥}. It is clear that P1 is also

a cone. By the same proof of Lemma 2.3, we can get that T : P1 → P1 is completely
continuous .

To begin with, in view of f0 = ∞, there exists r1 ∈ (0, ρ1) such that f(t, u) ≥

ϕp(λ1u) for t ∈ [
1

4
,
3

4
] and 0 < u ≤ r1, where λ1 ∈

(
l

ρ(1− α)
,+∞

)
.

Let Ωr1 = {u ∈ P1| ∥u∥ < r1}. Then for any u ∈ ∂Ωr1 , by using the same
calculation in the proof of Theorem 3.1, we have

(Tu)

(
1

2

)
=

∫ 1

0

G

(
1

2
, s

)
ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥
∫ 1

0

G

(
1

2
, s

)
ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G

(
1

2
, s

)
ϕq

(∫ s

1
4

f(τ, u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G

(
1

2
, s

)
ϕq

(∫ s

1
4

(λ1u(τ))
p−1dτ

)
ds

≥
∫ 3

4

1
4

G

(
1

2
, s

)
ϕq

(∫ s

1
4

(
λ1 ·

1− α

4
∥u∥
)p−1

dτ

)
ds

≥λ1 ·
1− α

4
∥u∥

∫ 3
4

1
4

G

(
1

2
, s

)(
s− 1

4

)q−1

ds =
λ1ρ(1− α)

l
∥u∥ > ∥u∥,

which implies ∥Tu∥ > ∥u∥ for u ∈ ∂Ωr1 . Thus, from theorem 2.2, it follows that

i(T,Ωr1 , P1) = 0. (3.3)
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Next, since f∞ = ∞, there exists R1 > ρ1 such that f(t, u) ≥ ϕp(λ2u) for t ∈ [
1

4
,
3

4
]

and u ≥ R1, where λ2 ∈
(

l

ρ(1− α)
,+∞

)
.

Let r2 >
4

1− α
R1 > ρ1 and set Ωr2 = {u ∈ P1| ∥u∥ < r2}. If u ∈ ∂Ωr2 , then

min
t∈[ 14 ,

3
4 ]
u(t) ≥ 1− α

4
∥u∥ > R1. Therefore, for any u ∈ ∂Ωr2 , by using the method to

get (3.3), we get

(Tu)

(
1

2

)
>

λ2ρ(1− α)

l
∥u∥ > ∥u∥,

which implies ∥Tu∥ > ∥u∥ for u ∈ ∂Ωr2 . Hence, by theorem 2.2, it follows that

i(T, Ωr2 , P1) = 0. (3.4)

Finally, let Ωρ1
= {u ∈ P1| ∥u∥ < ρ1}. Then for any u ∈ ∂Ωρ1

, from (H6), we have

(Tu)(t) =

∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

<
1

1− α
mρ1

∫ 1

0

G(s, s)ds = ρ1 = ∥u∥,

which implies ∥Tu∥ < ∥u∥ for u ∈ ∂Ωρ1
. Hence, by theorem 2.2, we obtain

i(T, Ωρ1
, P1) = 1. (3.5)

Note that r1 < ρ1 < r2; it follows from the additivity of fixed point index and
(3.3)-(3.5) that

i(T, Ωρ1
\Ωr1 , P1) = i(T, Ωρ1

, P1)− i(T, Ωr1 , P1) = 1,

and
i(T, Ωr2\Ωρ1

, P1) = i(T, Ωr2 , P1)− i(T, Ωρ1
, P1) = −1.

Therefore, T has a fixed point u1 in Ωρ1
\Ωr1 , and has a fixed point u2 in Ωr2\Ωρ1

.
Both are positive solutions of the BVP (1.1), (1.2) and 0 < ∥u1∥ < ρ1 < ∥u2∥. The
proof is completed. □

Theorem 3.3. Assume that (H1) and (H2) hold. If the following conditions hold,

(H7) f
0 = f∞ = 0;

(H8) there exists a constant ρ2 > 0 such that

f(t, u) > ϕp(
lρ2
4

), for t ∈ [
1

4
,
3

4
], u ∈ [

1− α

4
ρ2, ρ2].

Then the BVPs (1.1) and (1.2) have at least two positive solutions u1 and u2 such
that 0 < ∥u1∥ < ρ2 < ∥u2∥.



66 X. Feng & H. Feng

Proof. Firstly, since f0 = 0, there exists r1 ∈ (0, ρ2) such that f(t, u) ≤ ϕp(ε1u)
for t ∈ [0, 1] and 0 < u ≤ r1, where ε1 ∈ (0,m).

Let Ωr1 = {u ∈ P1| ∥u∥ < r1}. Then for any u ∈ ∂Ωr1 , by using the same
calculation in the proof of Theorem 3.2, we have

(Tu)(t) =

∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α
ε1∥u∥

∫ 1

0

G(s, s)ds =
ε1
m

∥u∥ < ∥u∥,

which implies ∥Tu∥ < ∥u∥ for u ∈ ∂Ωr1 . Therefore, by theorem 2.2,

i(T,Ωr1 , P1) = 1. (3.6)

Secondly, in view of f∞ = 0, there exists R2 > ρ2 such that f(t, u) ≤ ϕp(ε2u) for
t ∈ [0, 1] and u ≥ R2, where ε2 ∈ (0,m).

We divide the proof into two cases: f is bounded and f is unbounded.
Case (i). Suppose that f is bounded, which implies that there exists M > 0 such
that f(t, u) ≤ ϕp(M) for all t ∈ [0, 1] and u ∈ [0,+∞).

Now, choosing r2 > max

{
M

m
,R2

}
for u ∈ P1, then with ∥u∥ = r2, we get

(Tu)(t) =

∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α
M

∫ 1

0

G(s, s)ds =
M

m
< r2 = ∥u∥.

Case (ii). Suppose that f is unbounded. Then, for f : [0, 1]×[0,+∞) is continuous,
we know that there exist t0 ∈ [0, 1] and r2 > R2 > ρ2 such that f(t, u) ≤ f(t0, r2)
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for t ∈ [0, 1] and 0 < u ≤ r2. Then for u ∈ P1, with ∥u∥ = r2, we have

(Tu)(t) =

∫ 1

0

G(t, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(τ, u(τ))dτ

)
ds

≤ 1

1− α

∫ 1

0

G(s, s)ϕq

(∫ 1

0

f(t0, r2)dτ

)
ds

≤ 1

1− α
ε2r2

∫ 1

0

G(s, s)ds =
ε2
m

r2 < r2 = ∥u∥.

Hence, in either case, we may always set Ωr2 = {u ∈ P1| ∥u∥ < r2} such that

∥Tu∥ < ∥u∥ for u ∈ ∂Ωr2 .

Thus, by Theorem 2.2, it follows that

i(T, Ωr2 , P1) = 1. (3.7)

Finally, let Ωρ2
= {u ∈ P1| ∥u∥ < ρ2}. Since u ∈ ∂Ωρ2

⊂ P1, min
t∈[ 14 ,

3
4 ]
u(t) ≥

1− α

4
∥u∥ =

1− α

4
ρ2. Hence for any u ∈ ∂Ωρ2

, from (H8), we have

(Tu)

(
1

2

)
=

∫ 1

0

G

(
1

2
, s

)
ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

+
α

1− α

∫ 1

0

G(η, s)ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥
∫ 1

0

G

(
1

2
, s

)
ϕq

(∫ s

0

f(τ, u(τ))dτ

)
ds

≥
∫ 3

4

1
4

G

(
1

2
, s

)
ϕq

(∫ s

1
4

f(τ, u(τ))dτ

)
ds

≥ lρ2
4

∫ 3
4

1
4

G

(
1

2
, s

)(
s− 1

4

)q−1

ds = ρ · ρ2 > ρ2 = ∥u∥,

which yields ∥Tu∥ > ∥u∥ for u ∈ ∂Ωρ2
. Hence, by Theorem 2.2, we obtain

i(T, Ωρ2
, P1) = 0. (3.8)

Note that r1 < ρ2 < r2. As before, from (3.6)-(3.8), we get

i(T, Ωρ2\Ωr1 , P1) = −1, i(T, Ωr2\Ωρ2 , P1) = 1,

which shows that T has two fixed points, and consequently, BVPs (1.1) and (1.2)
have two positive solutions. This completes the proof. □
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3.1. Example

Now, we present an example to illustrate Theorem 3.1, the main result. Consider
the following third-order three-point boundary value problem with p-Laplacian.

Example 4.1. Consider the following BVP

(ϕ3(u
′′(t)))′ + [φ(t)h(u(t))]2 = 0, t ∈ (0, 1), (3.9)

u(0) = u(1) =
1

2
u(

1

2
), u′′(0) = 0, (3.10)

where φ(t) = 4t, t ∈ [0, 1], and

h(u) =



480u, 0 ≤ u ≤ 1

480
,

1,
1

480
< u ≤ 1

60
,

30

119
u+

237

238
,

1

60
< u ≤ 2,

357

476
u, u > 2.

In this example, we note that p = 3 and α = η =
1

2
. Letting ρ =

9
√
2− 2

4
, by a sim-

ple calculation, we get q=
3

2
, G(s, s)=s(1−s) and l=4ρ

(∫ 3
4

1
4

G(
1

2
, s)(s− 1

4
)q−1ds

)−1

= 240, m = (1 − α)

(∫ 1

0

(1− s)ds

)−1

= 6(1 − α) = 3. We choose b =
1

240
and

c = 2. Evidently, b < min{m
l
,
1

4
}c and

(i) for t ∈ [
1

4
,
3

4
],

1

480
≤ u(t) ≤ 1

60
, we have

f(t, u) = [φ(t)h(u(t))]2 ≥
[
4× 1

4
× 1

]2
= (lb)2.

(ii) for t ∈ [0, 1], 0 ≤ u(t) ≤ 2, we have

f(t, u) = [φ(t)h(u(t))]2 ≤
[
4× 1×

(
30

119
× 2 +

237

238

)]2
= (mc)2.

Hence, all the conditions of Theorem 3.1 are satisfied, then BVPs (3.9) and (3.10)

have at least one positive solution u∗ with ∥u∗∥ ≤ 2, min
t∈[ 14 ,

3
4 ]
u∗(t) >

1

480
.
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