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Abstract This paper is devoted to a three-species stochastic competitive
system with multiplicative noise. The existence of stochastic traveling wave
solution can be obtained by constructing sup/sub-solution and using random
dynamical system theory. Furthermore, under a more restrict assumption
on the coefficients and by applying Feynman-Kac formula, the upper/lower
bounds of asymptotic wave speed can be achieved.
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1. Introduction

In this paper, we are interested in the following stochastic three-species competition
model driven by Itô type multiplicative noise

ut = uxx + u(1− u− a1v − b1w) + ϵudWt,

vt = vxx + v(1− v − a2u) + ϵ(v − 1)dWt,

wt = wxx + w(1− w − b2u) + ϵ(w − 1)dWt,

u(0) = u0, v(0) = 1− χ(−∞,0], w(0) = 1− χ(−∞,0],

(1.1)

where u = u(t, x), v = v(t, x) and w = w(t, x) denote the species densities of
three competing species at location x ∈ R and time t > 0 respectively. Moreover,
ai > 0 and bi > 0 represent the interspecific competition coefficients, and the
environment carrying capacity of each species is ruled to be “1”. Further, W (t) is
the white noise. Let ϵ = 0, a2 = b2 and dispersal terms be replaced by nonlocal
dispersal functions. Then equation (1.1) is reduced to the model proposed by Dong,
Li and Wang in [2], and they showed the existence, monotonicity and asymptotic
behavior of traveling waves with bistable dynamics. Based on their work, Wang,
Chen and Wu [24] used a three-species competition model to expand Lotka-Volterra
model to empirical analysis, and concluded that cooperative action is better than
competitive strategy. Furthermore, He and Zhang [6] studied the linear determinacy
of critical wave speed of three-species competitive system with nonlocal dispersal
by constructing more precise conditions and suitable upper solutions. Moreover,

†The corresponding author.
Email: wenhao12@nudt.edu.cn (H. Wen), jhhuang32@nudt.edu.cn (J. Huang)

1College of Science, National University of Defense Technology, Changsha,
Hunan 410073, China

∗The authors were supported by National Natural Science Foundation of China
(Grant Nos. 11771449, 12031020).

http://dx.doi.org/10.12150/jnma.2024.32


Traveling Wave of Three-Species Stochastic L-V Competitive System 33

Liu et al., [14] studied three-species competition-diffusion model in a general case
where every species competes with each other, and they pointed out that the wave
speed of the slowest species is dependent on the other two faster species.

Throughout the paper, we always assume the coefficients of three-species com-
petitive system (1.1) as follows

� (C1) a1 <
1
2 , b1 <

1
2 , a2 ≥ 2, b2 ≥ 2;

� (C2) 2max{a1a2, b1b2} < 2− a1 − b1;

� (C3) 2min{a1a2 + b1b2}+ (a1 + b1 − 1)2 ≥ 1;

� (C4) max{a2 − 1, b2 − 1} ≤ 1
1−a1−b1

.

Obviously, (C1) ∩ (C2) ∩ (C3) ∩ (C4) is not empty. Under condition (C1),
there exist five nonnegative equilibria P1 = (0, 1, 1), P2 = (1, 0, 0), P3 = (0, 1, 0),
P4 = (0, 0, 1) and P5 = (0, 0, 0), where P2 is the only stable equilibrium, and the
traveling wave solution is a trajectory connecting P1 and P2. More precisely, it
reflects that the species u wins the competition rather than the pair (v, w).

Letting v := 1− ṽ, w := 1− w̃ and dropping the tilde, we have
ut = uxx + u(1− a1 − b1 − u+ a1v + b1w) + ϵudWt,

vt = vxx + (1− v)(a2u− v) + ϵvdWt,

wt = wxx + (1− w)(b2u− w) + ϵwdWt,

u(0) = χ(−∞,0], v(0) = χ(−∞,0], w(0) = χ(−∞,0],

(1.2)

and it is easy to see that (1.2) is a stochastic cooperative system, and the two
equilibria P1 and P2 turn to be

P̃1 = (0, 0, 0), P̃2 = (1, 1, 1) (1.3)

respectively.
It is worth mentioning that most existing results for stochastic traveling wave

solution deal with the scaler Fisher-KPP equation. For instance, Tribe [23] stud-
ied the KPP equation with nonlinear multiplicative noise

√
udWt, and Muëller et

al., [16–18] studied the KPP equation with
√
u(1− u)dWt. Both of their works take

the Heaviside function as the initial data, and the main contribution of Muëller
is that he explicitly described the influence brought by the noise, whether it is
weak or strong, and successfully estimated the wave speed with an upper bound
and a lower bound. Zhao et al., [3, 20, 21] confirmed that only if the strength of
noise is moderate, and when the multiplicative noise is k(t)dWt, the effects of noise
would present or the solution would tend to be zero or converge to the determin-
istic traveling wave solution. Huang and Liu [8] studied the KPP equation driven
by dual noises k1udW1(t) and k2(K − u)dW2(t), and revealed the bifurcations of
solution induced by the strength of noise. For stochastic two-species cooperative
system, Wen, Huang and Li [27] used random monotone dynamical systems and
the Kolmogorov tigheness criterion to obtain the existence of stochastic traveling
wave solution, and then by constructing the upper and lower solution and applying
Feynman-Kac formula, they obtained the estimation of the upper bound and lower
bound for wave speed respectively. The novelty of this paper not only in the three-
species competitive system we study, for which there is no relevant work, but also
in our confirmation that the lower bound of wave speed depends on the impact of
vulnerable groups on powerful groups.
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This paper is organized as follows. In Section 2, we present some notations and
crucial lemmas. In Section 3, the existence of stochastic traveling wave solution is
established. Finally, in Section 4, we estimate the wave speed by determining the
upper bound and lower bound with the sup-solution and the sub-solution respec-
tively.

2. Preliminaries and notation

Throughout this paper, we set Ω be the space of temperature distributions, F be
the σ-algebra on Ω, and (Ω,F ,P) be the white noise probability space. Denoted by
E, the expectation is with respect to P. Denoted by ϕλ(x) = exp(−λ|x|), here are
some notations:

� C+ = {f |f : R→ [0,∞) and f is continuous};
� ||f ||λ = sup

x∈R
(|f(x)ϕλ(x)|);

� C+
λ = {f ∈ C+|f is continuous, and |f(x)ϕλ(x)| → 0 as x→ ±∞};

� C+
tem = ∩

λ>0
C+

λ ;

� C+
C[0,1] = {f |f : R→ [0, 1]} is the space of nonnegative functions with compact

support;

� Φ = {f : ||f ||λ <∞ for some λ < 0} is the space of functions with exponen-
tial decay.

Lemma 2.1 ( [23]). A set K ⊂ C+
λ is called relatively compact, if and only if

(a) K is equicontinuous on a compact set;

(b) lim
R→∞

sup
f∈K

sup
|x|≥R

|f(x)e−λ|x|| = 0.

Lemma 2.2 ( [23]). K ⊂ C+
tem is (relatively) compact, if and only if it is (relatively)

compact in C+
λ for all λ > 0.

Lemma 2.3 ( [23]). (Kolmogorov tightness criterion) For C <∞, δ > 0, µ < λ, γ >
0, define

K(C, δ, γ, µ) = {f : |f(x)− f(x′)| ≤ C|x− x′|γeµ|x| for all |x− x′| ≤ δ}.

Then with the above conditions, we know that K(C, δ, γ, µ)∩{f :
∫
R
f(x)ϕ1dx ≤

a} is compact in C+
λ , where a is a constant.

(1) If {Xn(·)} are Cλ-valued processes, with {
∫
R
Xnϕ1dx} tight, and there are

C0 <∞, p > 0, γ > 1, µ < λ such that for all n ≥ 1, |x− y| ≤ 1,

E(|Xn(x)−Xn(y)|p) ≤ C0|x− y|γeµp|x|,

then {Xn} are tight.

(2) Similarly, if {Xn} are C([0, T ], C+
λ )-valued processes, with {

∫
R
Xn(0)ϕ1dx}

tight, and there are C0 < ∞, p > 0, γ > 2, µ < λ such that for all n ≥
1, |x− y| ≤ 1, |t− t′| ≤ 1, t, t′ ∈ [0, T ],

E(|Xn(x, t)−Xn(y, t
′)|p) ≤ C0(|x− y|γ + |t− t′|γ)eµp|x|,

then {Xn} are tight.
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3. Existence of traveling wave solution

For simplicity, we denote by Y = (u, v, w)T , F (Y ) = (u(1 − a1 − b1 − u + a1v +
b1w), (1− v)(a2u− v), (1−w)(b2u−w))T , H(Y ) = (u, v, w)T , F1(Y ) = u(1− a1 −
u+ a1v + b1w), F2(Y ) = (1− v)(a2u− v), F3(Y ) = (1− w)(b2u− w), H1(Y ) = u,
H2(Y ) = v, H3(Y ) = w, and we can rewrite the transformed system (1.2){

Yt = Yxx + F (Y ) + ϵH(Y )dWt,

Y (0, x) = Y0 = (u0, v0, w0)
T ,

(3.1)

where u0 = v0 = w0 = χ(−∞,0].
For any matrix M = (mij)n×m, define the norm | · | as |M | = Σi,j=1|mij |, and

the vector norm is ||A||∞ = max
i

(Ai).

Lemma 3.1. For u0, v0, w0 ∈ C+
tem, and a.e. ω ∈ Ω, there exists a unique solution

Y (t, x) to (1.2) with the form

Y (t, x) =

∫
R

G(t, x, y)Y0dy

+

∫ t

0

∫
R

G(t− s, x, y)F (Y )dsdy + ϵ

∫ t

0

∫
R

G(t− s, x, y)H(Y )dWsdy,

where G(t, x, y) is the Green function.

Proof. Set Fn
1 (Y

n) = (1 − a1 − b1)u
n − (un)2 ∧ n + a1(u

n ∧
√
n)(vn ∧

√
n) +

b1(u
n ∧

√
n)(wn ∧

√
n), Fn

2 (Yn) = a2u
n − vn − a2(u

n ∧
√
n)(vn ∧

√
n) + (vn)2 ∧ n,

Fn
3 (Y

n) = b2u
n − wn − b2(u

n ∧
√
n)(wn ∧

√
n) + (wn)2 ∧ n. Then there exists a

pathwise unique solution Y n(t) ∈ C+
tem solving{

Y n
t = Y n

xx + Fn(Y n) + ϵH(Y n)dWt,

Y n
0 = Y0.

(3.2)

Thus, referring to [23,27], one can easily finish the proof by Kolmogorov tightness
criterion (Lemma 2.3), and any limit point of sequence {Y n(t) : n ≥ 1} is a solution
to equation (3.1). Similarly, we know that Y (t, x) ∈ C+

tem.
Furthermore, along the idea of Tribe [23], we have the following conclusion which

contributes to verifying that Y (t, x) is stationary.

Lemma 3.2 ( [23]). All solutions to (3.1) started at Y0 have the same law which
we denote by QY0,a1,a2,b1,b2 , and the map (Y0, a1, a2, b1, b2) → QY0,a1,a2,b1,b2 is con-
tinuous. The law QY0,a1,a2,b1,b2 for Y0 ∈ C+

tem forms a strong Markov family.

First, referring to [10,19,23], we introduce the comparison methods for stochastic
reaction-diffusion equations as follows.

Lemma 3.3. There is a coupling solution Y (t, x) to (3.1) started at Y0 ∈ C+
tem

with Θ(t, x) a solution to{
Θt = Θxx + P (Θ) + ϵH(Θ)dWt,

Θ0 = Y0.

If P (Y ) ≥ F (Y ) and P (Y ) is Lipschitz continuous, then for any Y0,Θ0 ∈ C+
tem,

the following assertions hold.
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(1) Fix Θ
(1)
0 ,Θ

(2)
0 ∈ C+

tem with Θ
(1)
0 ≤ Θ

(2)
0 , then for every t > 0, x ∈ R, and for

a.e. ω ∈ Ω
Θ(1)(t, x) ≤ Θ(2)(t, x).

(2) For every t > 0, x ∈ R, and for a.e. ω ∈ Ω

Y (t, x) ≤ Θ(t, x).

Next, we will show how to construct sup-solution and do some estimation about
Y (t, x), which is of great importance for our further research.

Lemma 3.4. Let (û(t, x), ŵ(t, x)) be the solution to{
ût = ûxx + (1− a1 − b1)û(1− α+β

2(1−a1−b1)
û) + ϵûdWt,

û(0, x) = 2(1−a1−b1)
α+β χ(−∞,0],

(3.3)

where α, β ∈ ( 1−2min{a1a2,b1b2}
1−a1−b1

, 2−a1−b1−2max{a1a2,b1b2}
2−a1−b1

) are both positive constants,

then we have û(t, x) ∈ C+
tem. Let (u, v, w) = (û, 1−α

2a1
û, 1−β

2b1
û), then (u, v, w) is a

sup-solution to equation (1.2).

Proof. First, referring to [27], the solution to equation (3.3) satisfies û(t, x) ∈
C+

tem, which completes the first part of this lemma. Moreover, for u component, we
have

uxx − ut + u(1− a1 − u+ a1v + b1w) + ϵudWt

=ûxx − ût + û(1− a1 − b1 − û+
1− α

2
û++

1− β

2
û) + ϵûdWt

=ûxx − ût + (1− a1 − b1)û(1−
α+ β

2(1− a1 − b1)
û) + ϵûdWt

=0.

For v component, we have

vxx − vt + (1− v)(a2u− v) + ϵvdWt

=
1− α

2a1
[ûxx − ût + û(1− a1 − b1 −

α+ β

2
û) + ϵûdWt]

+ (1− 1− α

2a1
û)(a2 −

1− α

2a1
)û− 1− α

2a1
û(1− a1 − b1 −

α+ β

2
û)

=[a2 −
1− α

2a1
− (1− α)(1− a1 − b1)

2a1
]û+

1− α

2a1
(
α+ β

2
− a2 +

1− α

2a1
)û2

=
1

2a1
[2a1a2 − (2− a1 − b1)(1− α)]û+

α− 1

4a21
[a1(α+ β)− α− 2a1a2 + 1]û2,

and for w component, we have

wxx − wt + (1− w)(b2u− w) + ϵwdWt

=
1− β

2a1
[ûxx − ût + û(1− a1 − b1 − kû) + ϵûdWt]

+ (1− 1− β

2b1
û)(b2 −

1− β

2b1
)û− 1− β

2b1
û(1− a1 − b1 −

α+ β

2
û)



Traveling Wave of Three-Species Stochastic L-V Competitive System 37

=[b2 −
1− β

2b1
− (1− β)(1− a1 − b1)

2b1
]û+

1− β

2b1
(
α+ β

2
− a2 +

1− β

2b1
)û2

=
1

2b1
[2b1b2 − (2− a1 − b1)(1− β)]û+

β − 1

4b21
[b1(α+ β)− β − 2b1b2 + 1]û2.

It can be deduced from (C3) that

2a1a2 − (2− a1 − b1)(1− α) ≤ 0, 2b1b2 − (2− a1 − b1)(1− β) ≤ 0

and

α− 1

4a21
[a1(α+ β)− α− 2a1a2 + 1] ≤ 0,

β − 1

4b21
[b1(α+ β)− β − 2b1b2 + 1] ≤ 0.

Moreover, since α, β ∈ ( 1−2min{a1a2,b1b2}
1−a1−b1

, 2−a1−b1−2max{a1a2,b1b2}
2−a1−b1

), combined

with (C2), we have obtained that 2(1−a1−b1)
α+β > 1. Therefore, we have verified our

claim, and (u, v, w) = (û, 1−α
2a1

û, 1−β
2b1

û) is a sup-solution to equation (1.2).
In the same way, we can construct a sub-solution to equation (1.2).

Lemma 3.5. Let ũ(t, x) be the solution to{
ũt = ũxx + ũ(1− a1 − b1 − ũ) + ϵûdWt,

ũ(0, x) = (1− a1 − b1)χ(−∞,0].
(3.4)

Then we have ũ(t, x) ∈ C+
tem. Set a2 − 1 ≤ γ1 ≤ a2

2−a1−b1
, b2 − 1 ≤ γ2 ≤ b2

2−a1−b1
,

and let (u, v, w) = (ũ, γ1ũ, γ2w̃). Then (u, v, w) is a sub-solution to equation (1.2).

Proof. Similar to Lemma 3.4, we know that ũ(t, x) ∈ C+
tem. For u component, we

have

uxx − ut + u(1− a1 − b1 − u+ a1v + b1w) + ϵudWt

=ũxx − ũt + ũ(1− a1 − b1 − ũ+ a1γ1ũ+ b1γ2ũ) + ϵũdWt

≥0.

For v component,

vxx − vt + (1− v)(a2u− v) + ϵvdWt

=α[ũxx − ũt + ũ(1− a1 − b1 − ũ) + ϵũdWt]

+ (1− γ1ũ)(a2 − γ1)ũ− γ1ũ(1− a1 − b1 − ũ)

=[a2 − γ1 − (1− a1 − b1)γ1]ũ+ γ1(1− a2 + γ1)ũ
2

=[a2 − (2− a1 − b1)γ1]ũ+ γ1(1− a2 + γ1)û
2,

and for w component, we have

wxx − wt + (1− w)(b2u− w) + ϵwdWt

=γ2[ũxx − ũt + ũ(1− a1 − b1 − ũ) + ϵũdWt]

+ (1− γ2ũ)(b2 − γ2)ũ− γ2ũ(1− a1 − b1 − ũ)

=[b2 − γ2 − (1− a1 − b1)γ2]ũ+ γ2(1− a2 + γ2)ũ
2

=[b2 − (2− a1 − b1)γ2]ũ+ γ2(1− b2 + γ2)û
2.



38 H. Wen & J. Huang

Since a2 − 1 ≤ γ1 ≤ a2

2−a1−b1
and b2 − 1 ≤ γ2 ≤ b2

2−a1−b1
, then (C4) ensures that

a2 − (2− a1 − b1)γ1 ≥ 0, b2 − (2− a1 − b1)γ2 ≥ 0 (3.5)

and

γ1(1− a2 + γ1) ≥ 0, γ2(1− b2 + γ2) ≥ 0. (3.6)

Now, we can say that (u, v, w) = (ũ, γ1ũ, γ2ũ) is a sub-solution to equation (1.2).

Theorem 3.1. For any u0, v0, w0 ∈ C+
tem \ {0}, and any t > 0, a.e. ω ∈ Ω, it

permits that

E[u(t, x) + v(t, x) + w(t, x)] ≤ C(ϵ), ∀x ∈ R,

where C(ϵ) is a constant.

Proof. From Lemma 3.4, we know that (u, v, w) = (û, 1−α
2a1

û, 1−β
2b1

û) is a sup-
solution to equation (1.2), and u(t, x) ≤ û(t, x) a.s., v(t, x) ≤ αû(t, x) a.s. and
w(t, x) ≤ βû(t, x) a.s. Therefore, by doing some estimations of û(t, x), we can
obtain the boundedness of Y (t, x). For stochastic KPP equation (3.3), referring
to [3, 8], we can easily find that for any û0 ∈ C+

tem, a.e. ω ∈ Ω and t > 0 fixed, we
have

E[û(t, x)] ≤ C1, (3.7)

where C1 is a positive constant depending on û0 and ϵ. Accordingly, for any
u0, v0, w0 ∈ C+

tem, a.e. ω ∈ Ω and t > 0 fixed, we have

E[u(t, x) + v(t, x) + w(t, x)] ≤(1 +
1− α

2a1
+

1− β

2b1
)E[û(t, x)]

≤(1 +
1− α

2a1
+

1− β

2b1
)C1

:=C2,

where C2 is also a positive constant.
Moreover, for equation (3.3), letting V (t) = û2(t), via Itô formula, we have

dV (t) =2⟨û, ûxx⟩dt+ 2⟨û, û(1− a1 − b1 −
α+ β

2
û)⟩dt

+ ϵ2û2dt+ 2ϵû2dWt.

Then, integrating and taking the expectation gives that

E[V (t)] =E[|û0|2] + 2E
∫ t

0

⟨û, ûxx⟩ds+ ϵ2E
∫ t

0

û2ds

+ 2E
∫ t

0

⟨û, û(1− a1 − b1 −
α+ β

2
û)⟩ds

≤E[|û0|2]− 2E
∫ t

0

|∇û|2ds+ ϵ2E
∫ t

0

û2ds



Traveling Wave of Three-Species Stochastic L-V Competitive System 39

+ 2(1− a1 − b1)E
∫ t

0

û2ds− (α+ β)E
∫ t

0

û3ds

≤E[|û0|2]− (α+ β)E
∫ t

0

û3ds+ [2(1− a1 − b1) + ϵ2]E
∫ t

0

û2ds

+ E
∫ t

0

û2ds− E
∫ t

0

û2ds.

Thus, by Young inequality, there exists a positive constant Ck > 0 such that

[2(1− a1 − b1) + ϵ2 + 1]E
∫ t

0

û2ds ≤ (α+ β)E
∫ t

0

û3ds+ Ckt.

By Gronwall inequality, we have

E sup
0≤t≤T

[|û(t)|2] ≤ E[|û0|2]e−t + Ck(1− e−t).

Similarly, we have the conclusion that

E[|u(t)|2 + |v(t)|2 + |w(t)|2] ≤ (1 +
1

4a21
+

1

4b21
)[E[|û0|2] + Ck].

Thus, we complete the proof.
As far as we know, we have obtained the boundedness of Y (t, x) which con-

tributes to the use of comparison method, proving the boundedness of the wave-
front marker and estimating the wave speed through sup-solution and sub-solution.
Obviously, compared with the two-species competitive system, it causes more dif-
ficulties for us because of the relationship among the three different species, which
reflects the properties of equilibria. Next, the following lemma estimates how fast
the compact support of solution Y (t) can spread.

Lemma 3.6. Let Y (t, x) be a solution to (1.2) starting at Y0, and suppose for some
R > 0 that Y0 is supported outside (−R− 2, R+ 2). Then for any t ≥ 1,

P(
∫ t

0

∫ R

−R

||Y (s, x)||∞dsdx > 0) ≤Cet
∫ √

t

|x| − (R+ 1)

× exp(− (|x| − (R+ 1))2

2t
)||Y0||∞dx.

Proof. From Lemma 3.4 and Theorem 3.1, we first construct a sup-solution
(u⋆, v⋆, w⋆) ∈ C+

tem solving
u⋆t = u⋆xx + u⋆(κ− u⋆) + ϵu⋆dWt,

v⋆t = v⋆xx + (1− v∗)(a2u
⋆ − v⋆) + ϵv⋆dWt,

w⋆
t = w⋆

xx + (1− w⋆)(b2u
⋆ − w⋆) + ϵw⋆dWt,

u⋆(0) = u0, v
⋆(0) = v0, w

⋆(0) = w0,

where κ > a2

a2−a1
+ b2

b2−b1
is a constant satisfying F1(Y ) ≤ u(κ − a1u). Frequently,

we suppose the solution u∗ ∈ C+
tem solving{

u∗t = u∗xx + u∗(κ− u∗) + ϵu∗dWt,

u∗(0) = κu0,
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similar to Lemma 3.4, (u⋆, v⋆, w⋆) = (u∗, k1u
∗, k2w

∗), where a2

a2−a1
≤ k1 ≤ κ + 1,

and b2
b2−b1

≤ k2 ≤ κ + 1 is a sup-solution to equation (3.8),. Moreover, for a.e.
ω ∈ Ω and x ∈ R, we have

E[u⋆(t, x) + v⋆(t, x) + w⋆(t, x)] ≤ C(κ), C(κ) > 0 is a constant.

Since u(t, x) ≤ u⋆(t, x) a.s., v(t, x) ≤ v⋆(t, x) a.s. and w(t, x) ≤ v⋆(t, x) a.s.,
refer to [1, 23], we have

P(
∫ t

0

∫ R

−R

u(s, x)dsdx > 0) ≤ Cet
∫ √

t

|x| − (R+ 1)
× exp(− (|x| − (R+ 1))2

2t
)u0dx,

and it leads to

P(
∫ t

0

∫ R

−R

v(s, x)dsdx > 0) ≤ Cet
∫ √

t

|x| − (R+ 1)
× exp(− (|x| − (R+ 1))2

2t
)v0dx.

Besides, we also have

P(
∫ t

0

∫ R

−R

w(s, x)dsdx > 0) ≤ Cet
∫ √

t

|x| − (R+ 1)
× exp(− (|x| − (R+ 1))2

2t
)w0dx.

With these three inequalities, we complete the proof.

In order to construct a tight measure sequence in Lemma 3.9, it essentially re-
quires that Y (t, x) satisfy Kolmogorov tightness criterion, and Y (t, x) ∈ K(C, δ, µ, γ).
For more universality, we will verify this property with a p-moment estimation.

Lemma 3.7. For any u0, v0, w0 ∈ C+
tem \ {0}, t > 0, fixed p ≥ 2 and a.e. ω ∈ Ω,

if |x− x′| ≤ 1, there exists a positive constant C(t), such that

QY0(|Y (t, x)− Y (t, x′)|p) ≤ C(t)|x− x′|p/2−1.

Proof. Since the solution Y (t, x) can be expressed as

Y (t, x) =

∫
R

G(t, x− y)Y0dy

+

∫ t

0

∫
R

G(t− s, x, y)F (Y )dsdy + ϵ

∫ t

0

∫
R

G(t− s, x, y)H(Y )dWsdy,
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through direct calculation, we get

|Y (t, x)− Y (t, x′)|p

≤3p−1|
∫
R

(G(t, x− y)−G(t, x′ − y))u0dy|p

+ 3p−1|
∫
R

(G(t, x− y)−G(t, x′ − y))v0dy|p

+ 3p−1|
∫
R

(G(t, x− y)−G(t, x′ − y))w0dy|p

+ 3p−1|
∫
R

∫ t

0

(G(t− s, x− y)−G(t− s, x′ − y))F1(Y )dsdy|p︸ ︷︷ ︸
I

+ 3p−1|
∫
R

∫ t

0

(G(t− s, x− y)−G(t− s, x′ − y))F2(Y )dsdy|p︸ ︷︷ ︸
II

+ 3p−1|
∫
R

∫ t

0

(G(t− s, x− y)−G(t− s, x′ − y))F3(Y )dsdy|p︸ ︷︷ ︸
III

+ 3p−1ϵp|
∫
R

∫ t

0

(G(t− s, x− y)−G(t− s, x′ − y))H1(Y )dWsdy|p︸ ︷︷ ︸
IV

+ 3p−1ϵp|
∫
R

∫ t

0

(G(t− s, x− y)−G(t− s, x′ − y))H2(Y )dWsdy|p︸ ︷︷ ︸
V

+ 3p−1ϵp|
∫
R

∫ t

0

(G(t− s, x− y)−G(t− s, x′ − y))H3(Y )dWsdy|p︸ ︷︷ ︸
V I

.

Referring to Shiga [22] Lemma 6.2, as∫ t

0

∫
R

(G(t− s, x− y)−G(t− s, x′ − y))2dsdy ≤ C(t)|x− x′|,

for IV , with Theorem 3.1, we obtain

E[III] ≤C(p)ϵpE(
∫ t

0

∫
R

(G(t− s, x− y)−G(t− s, x′ − y))2dsdy)p/2−1

× (

∫ t

0

∫
R

(G(t− s, x− y)−G(t− s, x′ − y))2updsdy)

≤C1(p, t)|x− x′|p/2−1.

Similarly, for V and V I, we have

E[V ] ≤ C2(p, t)|x− x′|p/2−1, E[V I] ≤ C3(p, t)|x− x′|p/2−1.



42 H. Wen & J. Huang

For I, with Hölder inequality, we get

E[I] =3p−1E|
∫ t

0

∫
R

(G(t− s, x− y)−G(t− s, x′ − y))(u− a1u
2 + b1uv)dsdy|p

≤3p−1(

∫ t

0

∫
R

(G(t− s, x− y)−G(t− s, x′ − y))2dsdy)p/2−1

× (

∫ t

0

∫
R

|G(t− s, x− y)−G(t− s, x′ − y)|2E[(u− a1u
2 + b1uv)

p]dsdy)

≤C4(p, t)|x− x′|p/2−1.

Similarly,

E[II] ≤ C5(p, t)|x− x′|p/2−1, E[III] ≤ C6(p, t)|x− x′|p/2−1.

For the rest terms, we have

E|
∫
R

(G(t, x− y)−G(t, x′ − y))u0dy|p =E|
∫
R

∫ x

x′

(y − r)

2t
√
4πy

exp(− (y − r)2

4t
)u0drdy|p

≤K(t)(

∫
R

∫ x

x′

1√
t
exp(− (y − r)2

5t
)u0drdy)

p

≤K(t)|x−x′|p
∫
R

1√
t
exp(− (y − x)2

5t
)|u0|pdy

≤C7(p, t)|x− x′|p/2−1, (since |x− x′| ≤ 1)

and

E|
∫
R

(G(t, x− y)−G(t, x′ − y))v0dy|2 ≤ C8(p, t)|x− x′|p/2−1,

E|
∫
R

(G(t, x− y)−G(t, x′ − y))w0dy|2 ≤ C9(p, t)|x− x′|p/2−1.

In summary, we complete the proof with the above inequalities. That is,

E[|Y (t, x)− Y (t, x′)|p] ≤ C(p, t)|x− x′|p/2−1.

Remark 3.1. Lemma 3.7 verifies that Y (t, x) ∈ K(C, δ, µ, γ), and Y (t, x) satisfies
Kolmogrov tightness criterion. Thus, we can start to construct a traveling wave
solution.

Define QY0 as the law of the unique solution to equation (1.2) with an initial
data Y (0) = Y0. For a probability measure ν on C+

tem, we define

Qν(A) =

∫
C+

tem

QY0(A)ν(dY0).

In order to construct a traveling wave solution to equation (1.2), we must ensure
that the translation of the solution with respect to a wavefront marker is stationary,
and that the solution poses SCP property. However, R0(Y (t)) does not meet this



Traveling Wave of Three-Species Stochastic L-V Competitive System 43

demand. Therefore, we have to choose a new suitable wavefront marker. As the
solution to (1.2) with Heaviside initial condition is exponentially small almost surely
as x → ∞, with the stochastic Feynmac-Kac formula, we may turn to R1(t) :
C+

tem → [−∞,∞] defined as

R1(f) = ln

∫
R

exfdx,

R1(u(t)) = ln

∫
R

exu(t)dx,

and
R1(t) := R1(Y (t)) = max{R1(u(t)), R1(v(t)), R1(w(t))}.

The marker R1(t) is an approximation to R0(Y (t)) = max{R0(u(t)), R0(v(t)),
R0(w(t))}.

Let Z(t) = Y (t, · + R1(t)) = (Z1(t), Z2(t), Z3(t))
T , Z0(t) = Y (t, · + R0(Y (t))),

and define

Z(t) =


(0, 0, 0)T , R1(t) = −∞,

(u(t, ·+R1(t)), v(t, ·+R1(t)), w(t, ·+R1(t)))
T , −∞ < R1(t) <∞,

(1, 1, 1)T , R1(t) = ∞.

Hence, Z(t) is the wave shifted so that the wavefront marker R1(t) lies at the origin.
Note that whenever R0(Y0) < ∞, the compact support property in Lemma 3.6
implies that R0(t) <∞, ∀t > 0, QY0-a.s.

Remark 3.2. Here, we define R1(t) in the maximum form, not only since it simpli-
fies the discussion about boundedness, but also because the asymptotic wave speed
is the minimum wave speed which keeps the traveling wave solution monotonic.

As mentioned before, we calculate the asymptotic wave speed via c = lim
t→∞

R1(t)
t .

Therefore, the wavefront marker R1(t) defined in such a form can ensure that the
traveling wave solutions of the two subsystems are monotonic.

Next, define

νT = the law of
1

T

∫ T

0

Z(s)ds under QY0 .

Now, we summarise the method for constructing traveling wave solution. With
the initial data (u0 = χ(−∞,0], v0 = χ(−∞,0], w0 = χ(−∞,0]) ∈ C+

tem taken as Heav-
iside function, we shall show that the sequence {νT }T∈N is tight (see Lemma 3.9)
and any limit point is nontrivial (see Theorem 3.2). Hence, for any limit point ν
(the limit is not unique), Qν is the law of a traveling wave solution. Two parts con-
stituting the proof of tightness are Kolmogorov tightness criterion for the unshifted
waves (see Lemma 3.7) and the control on the movement of the wavefront marker
R1(t) to ensure that the shifting will not destroy the tightness (see Lemma 3.8).

Firstly, we complete preparations to prove the tightness of the sequence {νT }T∈N.

Lemma 3.8. For any u0, v0, w0 ∈ C+
tem \ {0}, t ≥ 0, d > 0, T ≥ 1, and a.e. ω ∈ Ω

there exists a positive constant C(t) <∞, such that

QνT (|R1(t)| > d) ≤ C(t)

d
.
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Proof. First, we again construct a sup-solution satisfying
ǔt = ǔxx + k0ǔ+ ϵǔdWt,

v̌t = v̌xx + F2(ǔ, v̌) + ϵv̌dWt,

w̌t = w̌xx + F3(ǔ, w̌) + ϵw̌dWt,

ǔ0 = u0, v̌0 = v0, w̌0 = w0,

(3.8)

where k0 > 0 is a constant which can be obtained by Theorem 3.1 such that F1(Y ) <
k0u. Let ξ(t, x) ∈ C+

tem be the solution to{
ξt = ξxx + k0ξ + ϵξdWt,

ξ0 = u0.

Then we can claim that (ǔ, v̌, w̌) := (ξ, p1ξ, p2ξ), is a sup-solution to equa-
tion (3.8), where a2

1+k0
≤ p1 ≤ a2 and b2

1+k0
≤ p2 ≤ b2, and v̌(t, x) ≤ p1ǔ(t, x) a.s.,

w̌(t, x) ≤ p2ǔ(t, x) a.s.

Therefore, we only need to study the property of ũ(t). According to the compar-
ison principle, we have u(t) ≤ ǔ(t) holding on [0, T ] uniformly, and for a.e. ω ∈ Ω,
the solution ǔ(t, x) can be expressed as

ǔ(t, x) =

∫
R

ek0tG(t, x− y)u0(y)dy + ϵ

∫
R

∫ t

0

G(t− s, x− y)ǔdWsdy.

Applying the comparison method, we obtain

Qu0(

∫
R

u(t, x)exdx) ≤ E[
∫
R

ǔ(t, x)exdx]

= E[
∫
R

∫
R

ek0tG(t, x− y)u0(y)dye
xdx] = ek0t+t

∫
R

u0(x)e
xdx.

Similarly, we have

Qv0(

∫
R

v(t, x)exdx) ≤ p1e
k0t+t

∫
R

u0(x)e
xdx,

Qw0(

∫
R

w(t, x)exdx) ≤ p2e
k0t+t

∫
R

u0(x)e
xdx.

Without generality, we assume that R1(t) = R1(u(t)). Then it permits that∫
R

u(t, x+R1(t))e
xdx =e−R1(t)

∫
R

u(t, x)exdx = 1.

On the other hand, we have∫
R

v(t, x+R1(t))e
xdx ≤ p1,

∫
R

w(t, x+R1(t))e
xdx ≤ p2.
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Associating with inequalities above, we have

QνT (R1(t) ≥ d) =
1

T

∫ T

0

Qu0(Qu(s)(R1(t) ≥ d))ds

=
1

T

∫ T

0

Qu0(Qu(s)(e−d

∫
R

u(t, x)exdx ≥ 1))ds

≤e−d 1

T

∫ T

0

Qu0(Qu(s)(

∫
R

u(t, x)exdx))ds

≤e−dek0t+t 1

T

∫ T

0

∫
R

u(s, x+R1(s))e
xdxds

=e−dek0t+t.

Next, Jensen’s inequality gives

Qu0(R1(t)) ≤ ln(ek0t+t

∫
R

u0(x)e
xdx) ≤ k0t+ t+R1(u0).

In addition, we have such an estimation

1

T
Qu0(

∫ T+t

t

R1(s)ds−
∫ T

0

R1(s)ds)

=
1

T
Qu0(

∫ T

0

R1(t+ s)−R1(s)ds)

=
1

T

∫ T

0

∫
{R1(t+s)−R1(s)>−d}

(R1(t+ s)−R1(s))Q
u0(du)ds

+
1

T

∫ T

0

∫
{R1(t+s)−R1(s)≤−d}

(R1(t+ s)−R1(s))Q
u0(du)ds

≤ 1

T

∫ T

0

∫
{R1(t+s)−R1(s)>0}

(R1(t+ s)−R1(s))Q
u0(du)ds

− d

T

∫ T

0

Qu0(R1(t+ s)−R1(s) ≤ −d)ds

≤ 1

T

∫ T

0

∫ ∞

0

Qu0(R1(t+ s)−R1(s) ≥ y)dyds

− d

T

∫ T

0

Qu0(R1(t+ s)−R1(s) ≤ −d)ds

=

∫ ∞

0

QνT (R1(t) ≥ y)dy − dQνT (R1(t) ≤ −d).

Rearranging the inequalities gives

QνT (R1(t) ≤ −d)

≤1

d

∫ ∞

0

QνT (R1(t) ≥ y)dy +
1

dT

∫ T

0

QνT (R1(s))ds−
1

dT

∫ T+t

t

Qu0(R1(s))ds

≤1

d

∫ ∞

0

e−y+k0t+tdy +
1

dT

∫ T

0

k0s+ s+R1(u0)ds

≤C(t)
d

.
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The proof is complete.
Now, we can say the marker R1(t) is bounded, which helps prove that the

sequence {νT : T ∈ N} is tight and wavefront marker R0(t) is bounded. Then, we
will show the tightness of {νT : T ∈ N} with Y (t, x) ∈ K(C, δ, µ, γ).

Lemma 3.9. For any u0, v0, w0 ∈ C+
tem \ {0}, and a.e. ω ∈ Ω, the sequence

{νT : T ∈ N} is tight.

Proof.
Similar to Theorem 3.8, we discuss with u(t, x). According to Lemma 3.7,

Y (t, x) ∈ K(C, δ, µ, γ) gives u(t, x) ∈ K(C, δ, µ, γ), then we obtain

νT (K(C, δ, γ, µ)) =
1

T

∫ T

0

Qu0(u(t, ·+R1(t)) ∈ K(C, δ, γ, µ))ds

≥ 1

T

∫ T

0

Qu0((u(t, ·+R1(t− 1)) ∈ K(Ce−µd, δ, γ, µ))

× |R1(t)−R1(t− 1)| ≤ d)ds

≥ 1

T

∫ T

1

Qu0(QZ1(t−1)(u(1) ∈ K(Ce−µd, δ, γ, µ)))dt

− 1

T

∫ T

1

Qu0(|R1(t)−R1(t− 1)| ≥ d)dt

:=I − II.

With Lemma 3.8, II → 0 as d→ ∞. Via Kolmogorov tightness and Lemma 3.7,
for given d, µ > 0, one can choose C, δ, γ to make I as close to T−1

T as desired. In
addition, we have

νT {u0 :

∫
R

u0(x)e
−|x|dx ≤

∫
R

u0(x)e
xdx = 1} = 1.

By the definition of tightness, for given µ > 0, one can choose C, δ, γ such that
νT (K(C, δ, µ, γ) ∩ {u0 :

∫
R
u0(x)e

−|x|dx}) as close to 1 as desired for T and d
sufficiently large, which implies that the sequence {νT : T ∈ N} is tight.

Theorem 3.2. For any u0, v0, w0 ∈ C+
tem \{0}, and a.e. ω ∈ Ω, there is a traveling

wave solution to equation (1.2), and Qν is the law of traveling wave solution.

Proof. Denote by (f, g) =
∫
R
fgdx. First, taking a subsequence {νTn

} converging

to ν, then we choose g(x) ∈ C+
tem satisfying

∫
R
g(x)exdx = 1. Choose g1(x), g2(x) ∈

C+
tem with g = g1 + g2, (g1, I(d/3,∞)) = 0 and (g2, I(−∞,2d/3)) = 0. Taking ϱ1, ϱ2

independent solutions to (3.8) with respect to ũ starting at g1, g2, then using the
comparison method shows that ϱ ≤ ϱ1 + ϱ2 is a solution to (3.8) with respect to ǔ
starting at g. Applying Lemma 3.6 and taking large d, we have

Qg((u(t, x), I(d,∞)) > 0) ≤P((ϱ1(t, x), I(d,∞)) > 0) + P((ϱ2(t, x), 1) > 0)

≤C(k0, t)e−d/3.

Taking h(x) with
∫
R
h(x)exdx = 1, we also have

Qh((v(t, x), I(d,∞))> 0) ≤ C(k0, t)e
−d/3, Qh((w(t, x), I(d,∞))> 0) ≤ C(k0, t)e

−d/3.
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Therefore,

νT (u0 : (u0, I(2d,∞)) = 0) =
1

T

∫ T

0

Qu0((Z1(t), I(2d,∞)) = 0)dt

≥ 1

T

∫ T

0

Qu0((u(t), I(d+R1(t−1),∞)) = 0,−|R1(t)−R1(t− 1)| ≤ d)dt

≥ 1

T

∫ T

1

Qu0(QZ1(t−1)((u(1), I(d,∞)) = 0)dt−QνT (|R1(1) ≥ d)

≥ T − 1

T
− C(1)

d
.

By Lemma 3.8, we have

lim
T→∞

lim
d→∞

νT (u0 : (u0, I(2d,∞)) = 0) = 1.

Similarly, we have

lim
T→∞

lim
d→∞

νT (v0 : (v0, I(2d,∞)) = 0) = 1

and

lim
T→∞

lim
d→∞

νT (w0 : (v0, I(2d,∞)) = 0) = 1.

In order to prove the boundedness of R0(t), from νTn
(u0 : (u0, e

x) = 1) = 1, we get

ν(u0 : (u0, e
x) ≤ 1) = 1.

Taking ed1(x) = exp(d− |x− d|), then

ν(u0 : (u0, e
x) ≥ 1) ≥ν(u0 : (u0, e

d
1) ≥ 1)

≥lim sup
n→∞

νTn
(u0 : (u0, e

d
1) = 1)

=lim sup
n→∞

νTn
(u0 : (u0, I(d,∞)) = 0) → 1, as d→ ∞.

Since ν(u0 : (u0, e
x) = 1) = 1, we obtain ν(u0 : R0(u0) > −∞) = 1.

Similarly, we have ν(v0 : R0(v0) > −∞) = 1 and ν(w0 : R0(w0) > −∞) = 1.

Now, we continue to prove the boundedness of wavefront marker R0(t). Taking
ψd ∈ Φ with (ψd > 0) = (d,∞), then

ν(u0 : R0(u0) ≤ d) =ν(u0 : (u0, ψd) = 0)

≥lim sup
n→∞

νTn
(u0 : (u0, ψd) = 0)

=lim sup
n→∞

νTn
(u0 : (u0, I(d,∞)) = 0) → 1 as d→ ∞.

Therefore, we have ν(Y0 : −∞ < R0(Y0) < ∞) = 1 and complete the proof of
boundedness of wavefront marker R0(t).
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To verify that the solution Y (t) is nontrivial, taking Rd
1(t) = ln

∫
||Y (t)||∞ed1dx,

we have

Qν(∃s ≤ t, |Y (s)| = 0) ≤Qν(Rd
1(t) < −d)

≤lim sup
n→∞

QνTn (Rd
1(t) < −d)

≤lim sup
n→∞

(QνTn (R1(t) < −d) +QνTn ((u(t), I(d,∞)) > 0))

≤C(T )
d

→ 0 as d→ ∞.

Now, we show that Z(t) is a stationary process, and Qν is the law of a traveling
wave solution to (1.2). Letting F : C+

tem → R be bounded and continuous, and
taking u(t, x) as an example, for any t > 0 fixed,

|QνTn (F (Z1(t)))−Qν(F (Z1(t)))|
≤|QνTn (F (u(t, ·+Rd

1(t))))−Qν(F (u(t, ·+Rd
1(t))))|

+ sup
x∈R

|F (u0)|(QνTn (R1(t) ̸= Rd
1(t)) +Qν(R1(t) ̸= Rd

1(t))).

Since νTn
(u0 : (u0, e

x) = 1) = 1, we have

QνTn (R1(t) ̸= Rd
1(t)) ≤ QνTn ((u(t), I(d,∞)) > 0) ≤ C(k0, t)/d.

With ν(u0 : (u0, e
x) = 1) = 1, we have

Qν(R1(t) ̸= Rd
1(t)) ≤ Qν((u(t), I(d,∞)) > 0) ≤ C(k0, t)/d.

By the continuity of u0 → Qu0 , one has QνTn → Qν . Since F is bounded and
continuous, then

|QνTn (F (u(t, ·+Rd
1(t))))−Qν(F (u(t, ·+Rd

1(t))))| → 0, as n→ ∞.

Therefore, we have

Qν(F (Z1(t))) = lim
n→∞

QνTn (F (Z1(t)))

= lim
n→∞

1

Tn

∫ Tn

0

Qu0(F (Z1(s+ t)))ds

= lim
n→∞

1

Tn

∫ Tn

0

Qu0(F (Z1(s)))ds

=ν(F ).

Similarly, we have Qν(F (Z2(t))) = ν(F ) and Qν(F (Z3(t))) = ν(F ). It is
straightforward to check that {Z(t) : t ≥ 0} is Markov. Hence, {Z(t) : t ≥ 0}
is stationary. Since the map Y0 → Y0(· − R0(Y0)) is measurable on C+

tem, the pro-
cess {Z0(t) : t ≥ 0} is also stationary, which implies that Qν is the law of traveling
wave solution to equation (1.2).
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4. Asymptotic wave speed

In this section, we investigate the asymptotic property of the traveling wave solution.
By constructing the sup-solution and the sub-solution, we obtain the asymptotic
wave speed for the two traveling wave solutions respectively. Then, we have the esti-
mation of the wave speed of traveling wave solutions to (1.2). Since the asymptotic
wave speed c of the traveling wave solution is defined as

c = lim
t→∞

R0(t)

t
a.s.,

we denote by R0(u(t)) = sup{x ∈ R : u(t, x) > 0}, R0(v(t)) = sup{x ∈ R : v(t, x) >
0} and R0(w(t)) = sup{x ∈ R : w(t, x) > 0}for the sub-systems of the transformed
cooperative system. Since the wavefront marker R0(t) of the cooperative system is
R0(t) = max{R0(u(t)), R0(v(t)), R0(w(t))}, and the asymptotic wave speed defined

as the maximum value of lim
t→∞

R0(u(t))
t , lim

t→∞
R0(v(t))

t and lim
t→∞

R0(w(t))
t , we can define

the wave speed c⋆ as

c⋆ = lim
t→∞

R0(Y (t))

t
a.s.

Now, we construct a sup-solution by Lemma 3.4 and Theorem 3.1. Let Ȳ (t, x) =
(ū(t, x), v̄(t, x), w̄(t, x))T satisfy

ūt = ūxx + ū(km − ū) + ϵūdWt,

v̄t = v̄xx + (1− v̄)(a2ū− v̄) + ϵv̄dWt,

w̄t = w̄xx + (1− w̄)(b2ū− w̄) + ϵw̄dWt,

ū0 = kmu0, v̄0 = v0, w̄0 = w0,

(4.1)

where F1(Y ) ≤ u(km − u), km is the upper bound from Theorem 3.1 and km >
a2

a2−a1
+ b2

b2−b1
.

Then, we construct a sub-solution and let Y (t, x) = (u(t, x), v(t, x), w(t, x))T

satisfy 
ut = uxx + u(1− a1 − b1 − u) + ϵudWt,

vt = vxx + (1− v)(a2u− v) + ϵvdWt,

wt = wxx + (1− w)(b2u− w) + ϵwdWt,

u0 = (1− a1 − b1)u0, v0 = v0, w0 = w0.

(4.2)

Obviously, F1(Y ) ≥ u(1− a1 − b1 − u). With equation (4.1) and equation (4.2),
we can state the following results.

Theorem 4.1. For any u0, v0, w0 ∈ C+
tem \{0}, let c⋆ be the asymptotic wave speed

of equation (1.2). Then√
4(1− a1 − b1)− 2ϵ2 ≤ c⋆ ≤

√
4km − 2ϵ2 a.s.

In order to prove Theorem 4.1, we need the following lemmas. First, we introduce
the comparison method for the asymptotic wave speed.

Lemma 4.1 ( [27]). Let Y (t, x) and Ȳ (t, x) be solutions to (4.2) and (4.1) respec-
tively. If c is the asymptotic wave speed of Y (t, ·+R0(Y (t))), and c̄ is the asymptotic
wave speed of Ȳ (t, ·+R0(Ȳ (t))), then

c ≤ c⋆ ≤ c̄ a.s.
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4.1. Asymptotic wave speed of sup-solution

Now, we show the asymptotic property of wavefront marker of the sup-solution. Let
ζ(t, x) be the solution to{

ζt = ζxx + ζ(km − ζ) + ϵζdWt,

ζ0 = ū0.

Obviously, u(km − u) ≥ F1(u, v). Similar to equation (3.8), we can construct a
sup-solution (ū, v̄, w̄) = (ζ, d1ζ, d2ζ) to equation (4.1), where a2

a2−a1
≤ d1 ≤ km + 1

and b2
b2−b1

≤ d2 ≤ km + 1, then we have ū(t, x) ≤ ζ(t, x) a.s., v̄(t, x) ≤ d1ζ(t, x)
a.s. and w̄(t, x) ≤ d2ζ(t, x) a.s. Thus, thanks to the definition of wave speed and
Lemma 4.1, we can obtain how the traveling waves spread by estimating c(ū).

Theorem 4.2. For any u0, v0, w0 ∈ C+
tem \ {0}, Ȳ (t, x) is a solution to (4.1), then

the asymptotic wave speed c(Ȳ ) satisfies

c(Ȳ ) =
√

4km − 2ϵ2 a.s.

Proof. For any h > 0, take κ ∈ (0, h
2

4 +
√
1− ϵ2

2 + 1h). Defining

ηt(ω) = exp(

∫ t

0

ϵdWs −
1

2

∫ t

0

ϵ2ds), 0 ≤ t ≤ ∞

constructing new probability space (Ω̄, F̄ , P̄), W̄ = (W̄ (t) : t ≥ 0) is Brownian
motion. Then, there exists T1 > 0, such that for t ≥ T1 and a.e. ω ∈ Ω

exp(−ϵ
2

2
t− κt) ≤ ηt(ω) ≤ exp(−ϵ

2

2
t+ κt).

Thus, the stochastic Feynman-Kac formula gives

ū(t, x) ≤ exp(t− 1

2
ϵ2t+ κt)P̃(W̃ (t) ≤ − x√

2
)

≤ exp(t− 1

2
ϵ2t+ κt− x2

4t
) a.s.,

for t ≥ T1. Set x ≥ (k + h)t, where k is a constant. Multiplying ex with both sides
and integrating in [(k + h)t,∞), then we have∫ ∞

(k+h)t

ū(t, x)exdx ≤
∫ ∞

(k+h)t

exp(t− 1

2
ϵ2t+ κt− x2

4t
+ x)dx

=2
√
t exp(t− 1

2
ϵ2t+ κt+ t)

∫ ∞

(k+h)t−2t√
4t

e−x2

dx

≤
√
t exp((1 + κ− k2

4
− kh

2
− h2

4
− k − h− ϵ2

2
)t) a.s.,

for t ≥ T1. Let k =
√
4− 2ϵ2 + 4− 2. Then, we obtain

lim
t→∞

∫ ∞

(k+h)t

ū(t, x)exdx = 0 a.s.
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Similarly, integrating ū(t, x)ex in [(
√
4km − 2ϵ2 + h)t, (k − h)t), we have∫ (k−h)t

(
√
4km−2ϵ2+h)t

ū(t, x)exdx

≤
∫ (k−h)t

(
√
4km−2ϵ2+h)t

exp(t− 1

2
ϵ2t+ κt− x2

4t
+ x)dx

=2
√
t exp(t− 1

2
ϵ2t+ κt+ t)

∫ (k−h)t−2t

2
√

2

(
√

4km−2ϵ2+h)t−2t

2
√

t

e−x2

dx

≤
√
t exp(t− ϵ2

2
t+ κt− 4km − 2ϵ2

4
t− (

√
4km − 2ϵ2)h

2
t− h2

4
t+

√
4km − 2ϵ2t+ ht)

−
√
t exp(t− ϵ2

2
t+ κt− k2

4
t+

kh

2
t− h2

4
t+ kt− ht)

≤
√
t exp(κt+

√
4km − 2ϵ2t− (

√
4km − 2ϵ2)h

2
t− h2

4
t+ ht)

−
√
t exp(κt+

kh

2
t− h2

4
t− ht) a.s.,

for t ≥ T1. Analogously, we have∫ (
√
4km−2ϵ2+h)t

(
√
4km−2ϵ2−h)t

ū(t, x)exdx

≤
√
t exp(κt+

√
4km − 2ϵ2t+

√
4km − 2ϵ2h

2
t− h2

4
t− ht)

−
√
t exp(κt+

√
4km − 2ϵ2t−

√
4km − 2ϵ2h

2
t− h2

4
t+ ht) a.s.

and ∫ (k+h)t

(k−h)t

ū(t, x)exdx ≤
√
t exp(κt+

kh

2
t− h2

4
t− ht)

−
√
t exp(κt− kh

2
t− h2

4
t+ ht) a.s.,

for t ≥ T1. Referring to [21], there exists T2 > 0, such that for all t ≥ T2 and
x < (

√
4− 2ϵ2 − h)t, there exist ρ1, ρ2 > 0 satisfying

exp(−ρ1
√
2t ln ln t) ≤ ū(t, x) ≤ exp(ρ2

√
2t ln ln t) a.s.,

which goes into∫ (
√
4km−2ϵ2−h)t

−∞
ū(t, x)exdx ≤ exp(ρ2

√
2t ln ln t+ (

√
4km − 2ϵ2 − h)t) a.s.

Since
∫∞
(k+h)t

ū(t, x)exdx ≤ 1, we have∫
R

ū(t, x)exdx ≤ exp(ρ2
√
2t ln ln t+ (

√
4km − 2ϵ2 − h)t)(2 +H(t) +G(t)) a.s.,
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where

H(t) =
√
t exp(

1

2
ϵ2 − ϵ2

2
t+ κt+

kh

2
t− h2

4
t− ρ2

√
2t ln ln t−

√
4km − 2ϵ2t)

and

G(t) =
√
t exp(

1

2
ϵ2 − ϵ2

2
t+ κt−

√
4km − 2ϵ2h

2
t− ρ2

√
2t ln ln t− h2

4
t+ 2ht).

With the arbitrariness of h and κ we know that H(t) ≤ 1 a.s. for large t, and
simple calculation shows that

1

t
lnG(t) =

1

2t
ln 4t− 1

t
(ln 2− ϵ2

2
+
ϵ2

2
t)

+ κ− 4km − 2ϵ2

4
h− h2

4
+ 2h− 1

t
ρ2
√
2t ln ln t a.s.

Again, with the arbitrariness of h and κ,

lim
t→∞

1

t
lnG(t) = 0 a.s.

In summary, we obtain the upper bound of the asymptotic wave speed of trav-
eling wave solution to (4.1),

R1(t)

t
≤ 1

t
ρ2
√
2t ln ln t+

√
4− 2ϵ2 − h+

1

t
ln 2 +

1

t
lnG(t) a.s.

Furthermore, we have

lim sup
t→∞

R1(t)

t
≤

√
4km − 2ϵ2 a.s. (4.3)

In addition, we have

R1(t)

t
≥ −1

t
ρ1
√
2 ln ln t+

√
4km − 2ϵ2 − h a.s.

Thus, the upper bounded can be obtained that

lim inf
t→∞

R1(t)

t
≥

√
4km − 2ϵ2 a.s. (4.4)

Combining (4.3) with (4.4) gives

lim
t→∞

R1(t)

t
=

√
4km − 2ϵ2 a.s.

As for c(v̄), by the definition of wave speed and R1(t) = ln
∫
exv̄(t, x)dx, we have

c(v̄) = lim
t→∞

ln
∫
R
v̄(t, x)exdx

t
≤ lim

t→∞

ln
∫
R
qū(t, x)exdx

t
=

√
4km − 2ϵ2 a.s.

Analogously, for c(w̄), we have

c(w̄) ≤
√

4km − 2ϵ2 a.s.

Then, we achieve the conclusion that c(Ȳ ) =
√
4km − 2ϵ2 a.s.
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4.2. Asymptotic wave speed of sub-solution

By the method used in Theorem 4.2, we refer to Lemma 3.5 and have that (u(t, x),
v(t, x), w(t, x) = (ũ(t, x), γ1ũ(t, x), γ2ũ(t, x)) is a sub-solution to equation (4.2).
Similarly, we construct a new probability space (Ω̃, F̃ , P̃), and W̃ = (W̃ (t) : t ≥ 0)
is a Brownian motion defined on (Ω̃, F̃ , P̃). For any h > 0, choosing 0 < τ <
h2

4 +
√
1− a1 − b1 − ϵ2

2 + 1h and defining

ηt(ω) = exp(

∫ t

0

ϵdWs −
1

2

∫ t

0

ϵ2ds), 0 ≤ t ≤ ∞,

there exists T1 > 0 such that

u(t, x) ≤ exp((1− a1 − b1)t−
1

2
ϵ2t+ τt− x2

4t
) a.s.,

for t ≥ T1. Thus, similar to Theorem 4.2, we have the conclusion.

Theorem 4.3. For any u0, v0, w0 ∈ C+
tem \ {0}, Y (t, x) is a solution to (4.2), then

the asymptotic wave speed c(Y ) satisfies

c(Y ) ≥
√
4(1− a1 − b1)− 2ϵ2 a.s.

Proof. The proof is similar to Theorem 4.2, and we omit it. However, it is note-
worthy that

c(v) ≥ lim
t→∞

ln
∫
R
γ1u(t, x)e

xdx

t
=

√
4(1− a1 − b1)− 2ϵ2 a.s. (4.5)

and

c(w) ≥
√
4(1− a1 − b1)− 2ϵ2 a.s. (4.6)

Based on the definition of the wave speed which keeps the traveling wave solution
monotonic, c(Y ) = max{c(u), c(v), c(w)} ≥

√
4(1− a1 − b1)− 2ϵ2 a.s.

Proof of Theorem 4.1. Associating Theorem 4.2 and Theorem 4.3 with Lemma 4.1,
we can achieve the conclusion√

4(1− a1 − b1)− 2ϵ2 ≤ c⋆ ≤
√
4km − 2ϵ2 a.s.
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