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Dynamics of a Discrete Two-Species Competitive
Model with Michaelies-Menten Type Harvesting
in the First Species®

Xin Jin' and Xianyi Li"f

Abstract In this paper, we use a semidiscretization method to derive a dis-
crete two-species competitive model with Michaelis-Menten type harvesting in
the first species. First, the existence and local stability of fixed points of the
system are investigated by employing a key lemma. Subsequently, the tran-
scritical bifurcation, period-doubling bifurcation and pitchfork bifurcation of
the model are investigated by using the Center Manifold Theorem and bi-
furcation theory. Finally, numerical simulations are presented to illustrate
corresponding theoretical results.
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1. Introduction and preliminaries

In the past few decades, more and more investigators have begun to pay atten-
tion to investigating competitive systems [1,2,4-6,9-12,15,19,24-26,29, 30, 32-34],
and many excellent results concerned with the extinction and global attractivity of
competitive systems have been obtained.

Murray [17] investigated the competitive system of traditional two-species Lotka-
Volterra model

dz
Gt =x1(b1 — anw — arpwa),

(1.1)
22 — 29 (by — ap171 — azax2),
where x1 and x5 denote the population density of the two species at time ¢ respec-
tively, and b;, a;5,7,j = 1,2, are positive constants.
In addition, when human activity is the main cause which leads to the extinc-
tion of endangered species, the study of resource-management, including fisheries,
forestry, and wildlife management, has great importance. It is sometimes necessary
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to harvest some populations, but harvesting should be regulated so that both the
ecological sustainability and conservation of the species can be implemented in a
long running. In order to further understand the scientific management of renew-
able resources and make the meaning of a model more realistic, many scholars are
devoted to establishing suitable biological models. Among them, Chen [3] studied
the following model

da
dt

d
2 = ray(1 - ),

where x and y denote the population density of the first and second species at time
t respectively, ¢ denotes the fishing coefficient of the first species, E denotes the
fishing effort, and 71,79, k1, k2, o, m1, mo are all positive constants. The function

h(z) = % is called Michaelis-Menten type harvesting, which was proposed

. o x Y qFx
- Tlm(l k1 ak-l) mi E4+mox’

(1.2)

by Clark and Mangel [7]. In other pieces of literature, h(x) may also take ¢Fzx, %
or &,

m

Later, in [31], based on model (1.2), Yu, Zhu and Li considered the following
system:

E .
L(iTﬂt” =rz(l- ;—1) — iy — 7m1qé+21:c7
(1.3)

W =ray(1 — £) — gy,
where 71,79, k1, k2, a1, a2, q1,m1, h1 and E are all positive. For simplicity, the au-
thors made the following nondimensional scheme:

1 1

{:T1t71_7: 7937@: kiy
2

k1
Dropping the bars, system (1.3) becomes

dz b
SG=rv(l—z—ay— ),
t c+x (14)
%mel—y—@ﬂ,
k1a2

_ oks p_ @1 E _ m E _
where a; = -2, b = Far iy c=3hp=

Generally speakmg7 it is impossible to obtam an “exact solution for a complex
differential equation system. Therefore, one usually derives its approximate solution
by using computer. Then, we should study its corresponding discrete model. For
a given system, there are many discretization methods including Euler forward
difference scheme, Euler backward difference scheme, semidiscretization methods
and etc. In this article, we use the semidiscretization method, which has been
applied in many studies ( [8, 13, 14,21]). For the related work, please also see
[16,18,20,27,28].

The discrete version of system (1.4) has not been found to be investigated yet.
Now, we use the semidiscretization method to derive its discrete model. For this,
suppose that [t] denotes the greatest integer not exceeding t. We consider the
average change rate of system (1.4) at integer number points

, a2

() dt 1—z([t]) — ary([t]) — c++k[t])’

A = p(1 — y([t]) — asa([1]))-

(1.5)

‘ [l
=
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It is easy to see that system (1.5) has piecewise constant arguments, and that a
solution (x(t),y(t)) of system (1.5) for ¢ € [0, +00) possesses the following charac-
teristics:

1. on the interval [0, +00), z(t) and y(t) are continuous;
2. when t € [0,400), except for the points ¢t € {0,1,2,3,---}, d”fi(tt) and d%—(tt) exist
everywhere.

The following system can be obtained by integrating system (1.5) with the in-
terval [n,t] for any ¢t € [n,n+ 1) and n=0,1,2,---

z(t) = zpet "I T YT Few (t—n),

(1.6)
y(t) — ynep(lfynfaazn)(t — n)7
where z,, = z(n) and y,, = y(n).
Letting ¢ — (n 4+ 1)~ in (1.6), it produces
xn+1 — xnel_a:?L_aly'rL_Tl;“?
(1.7)

Ynt1 = YpeP(1myn—azen)

where aq,a9,b,¢,p > 0, are the same as those in (1.4).

This paper is organized as follows: In Section 2, we analyze the existence of
fixed points of system (1.7). In Section 3, we investigate the local stability of fixed
points of system (1.7). In Section 4, we derive the sufficient conditions for the
occurence of the transcritical bifurcation, pitchfork bifurcation and period-doubling
bifurcation of system (1.7). In Section 5, we present some numerical simulations to
verify the corresponding theoretical results. Finally, we draw some conclusions and
discussions in Section 6.

Before we analyze the fixed points of system (1.7), we recall the following lemma
(see [22, p422]).

Lemma 1.1. Let F(\) = A2 + BX + C, where B and C are two real constants.
Suppose that \y and Ao are two roots of F(A\) = 0. Then, the following statements
hold.
(z) If (1) > 0, then
A1l <1 and |A2| < 1, if and only if F(—1) >0 and C < 1;
A1 =—1and Ay # —1, if and only if F(—1) =0 and B # 2;
M| <1 and |X2| > 1, if and only if F(—1) < 0;
A1l > 1 and |A2| > 1, if and only if F(—1) > 0 and C > 1;
A1 and A2 are a pair of conjugate complex roots, and || = | 2| =1,
if and only if —2 < B <2 and C =1;
(i.6) A1 = Ao = —1, if and only if F(—1) =0 and B = 2.
(#3) If F(1) = 0, namely, 1 is one root of F(\) =0, then the another root
A satisfies |\ = (<, >)1, if and only if |C] = (<, >)1.
(791) If F(1) < 0, then F'(\) =0 has one root lying in (1,00). Moreover,
(#4i.1) the other root X\ satisfies A < (=) — 1, if and only if F(—1) < (=)0;
(193.2) the other root —1 < A < 1, if and only if F(—1) > 0.

— — — — ~— ;.lj
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2. The existence of fixed points

The fixed points of system (1.7) satisfy the following equations:

l—z—a1y— = l—y—azx
T = re W y:ye”( y—az2e)

ie.,

x(lxaly b >O,
ctuw (2.1)
y(1—y—agx)=0.

We only consider nonnegative fixed points due to the biological meanings of
system (1.7). Obviously, system (1.7) always has two boundary fixed points Ey (0, 0)
and E1(0,1) for all parameters. For other boundary fixed points and positive fixed
points, we discuss the following cases.

1. When = # 0,y = 0, the other fixed points of system (1.7) are determined by
the following conditions: z is nonnegative and satisfies the equation

>~ (1-c)z+b—c=0, (2.2)
and y = 0. Let A; denote the discriminant of equation (2.2), i.e.,
Ay = (14 ¢)? — 4b.

Then
(1+e)?

4
If the other fixed points for system (1.7) exist, then A; >0, i.e., b < %.

Thereout,
1—C—VA1 _].—C—f—\/Al

g 2
Besides, we notice that ¢ < % and ¢ = % if and only if ¢ = 1.
Therefore,we can get the following results.

(DIf0<b<e,ma <0,292 > 0.

(2) Ifb=rc, when 0 < ¢ < 1,291 = 0,292 > 0; when ¢ = 1,291 = 295 = 0; when
c> 1,1’21 < 0,$22 =0.

B)Ife<b< %, when 0 < ¢ < 1,297 > 0,299 > 0; when ¢ > 1,297 <
0, x99 < 0.

4) If b = (126)2, when 0 < ¢ < 1,293 1= To1 = T9g = 15‘3 > 0; when
c=1,293 := 91 = T2 = 0; when ¢ > 1, x93 1= xo1 = X293 < 0.

(5) Ifb> %, system (1.7) has no other boundary fixed points.

2. When z # 0, y # 0, the possible positive fixed points of system (1.7) satisfy

the following equation:

AL > (=<0 b< (=>)

T21 =

b
l—z—a1y— =0,

(2.3)
1—y—asx =0,

i.e., x is a positive root of the equation:

Az? —Bx 4+ C =0, (2.4)



498 X. Jin & X. Li

where A = ajas—1, B=ay1+c—ajasc—1, C=c—aic—b,andy=1—asx >0.
Let the discriminant of (2.4) be denoted by Ao, i.e.,

Ay = B? —4AC = (—cA — ay + 1) + 4bA.

It is obvious that As > 0, if A > 0.
When Ay > 0, there exist positive fixed points of system (1.7), and

B — VA, _ B+VA,

T3l = oy T2 = o (2.5)

(1) If Az > 0, we consider the following cases:

Case 1: A > 0,C < 0. Then, z3; < 0,232 > 0 and sybtem (1.7) has only one
positive fixed point Esa(x32,y32) = (v32,1 — agw3z), if 232 < -~

Case 2: A < 0,C > 0. Then, z3; > 0,232 < 0 and system (1.7) has only one
positive fixed point Esq(x31,y31) = (31,1 — asxs1), if 231 < a—2

Case 3: A< 0,B<0,C <0. Then, z31 > 230 >0,0or A>0,B>0,C > 0,
then x50 > 31 > 0 and system (1.7) has two positive fixed points:

E3i(x31,y31) = (231, 1 — asxs1)

and
Eso(x32,y32) = (232, 1 — asx32).

Both E3; and FEsy exist, if max {231,232} < é

Case 4: A>0,B<0,C =0. Then, 235 =0 > z3;. Or A< 0,B > 0,C =0,
then x31 = 0 > x32 and system (1.7) has no positive fixed point.

Case 5: A < 0,B < 0,C =0. Then, x3; > 0 = x32 and system (1.7) only has
one positive fixed point Fs1(z31,y31) = (231, 1 — asxs1), if z31 < é

Case 6: A > 0,B > 0,C =0. Then, 32 > 0 = x3; and system (1.7) has only
one positive fixed point E3s(x32,y32) = (32,1 — a2x32), if 239 < é

(2) If Ay = 0,B < 0, then x33 := 231 = 732 = 2 > 0 and system (1.7) has
only one positive fixed point Es3(z33,ys3) = (%, 1—ay 2A) if B < =

(3) If Ay < 0, then system (1.7) has no positive fixed pomt

From what have discussed above, we can get the following results.

Theorem 2.1. System (1.7) always has two boundary fized points Ey(0,0) and
E1(0,1) for all parameters. The other possible boundary fized points and positive
fixed points are as follows.

1. For other possible boundary fized points:

(1) if 0 < b < ¢, system (1.7) has only one additional boundary fixed point

E22(x22, 0) (1 c+\/(1+c) —4b O)
(2) ifb=cand0 < ¢ < 1, system (1.7) has only one additional boundary fized

point Eog(x92,0) = (1 “ty 1+C)2 i ,0);

B)ife<b< (1+C) and 0 <c<1, system (1.7) has two additional boundary

ﬁxed points E21(I21, O) = (w, 0) and EQQ (IQQ, 0) = (w, 0) y

)

(4) if b= % and 0 < ¢ < 1, system (1.7) has only one additional boundary
fized point Eas(x23,0) = (15,0);

(5) if b> %, system (1.7) has no additional boundary fixed point.
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2. For possible positive fixed points:
(1) when As > 0, we have the following results.
(1.1) If A<0,C>00r A<0,B <O, C—O, then system (1.7) has only
one positive fized point Es1(x31,ys1) for 231 < =—
(12) IfA>0,C<0o0rA>0,B>0, Cf() then system (1.7) has only

one positive fized point Ess(x32,Yys2) for 32 < E

(1.3) fA<0,B<0,C<0o0orA>0,B>0,C>0, then system (1.7) has
two positive fized point Es1(x31,y31) and Egg(xgg,ygg) for max {xs31,x32} < é
(2) When As = 0, then system (1.7) has only one positive fized points

Es3(xss, ys3) for x3z < i
(3) When Ag < 0, then system (1.7) has no positive fived point.

3. Stability of fixed points

The Jacobian matrix of system (1.7) at any fixed point E(x,y) takes the following
form

<(Cim) $+1> 1— :cfalyfﬁ _alxelfzfalyfﬁ
J(E) =

—agpyeP1—v—a22) (1 — py)ert—y—axz)
The characteristic polynomial of Jacobian matrix J(F) reads as
F(A) =X —pr+gq,
where
p=Tr(J(E)),q = Det(J(E)).
Now, we formulate some results for the stability of the fixed points in the
following theorems.

Theorem 3.1. The following statements about the boundary fized points Ey(0,0)
and E1(0,1) of system (1.7) are true.

1. For Ey(0,0), we have the following results:
1) If b < ¢, then Ey is an unstable node;
2) If b = ¢, then Ey is non-hyperbolic;
3) If b > ¢, then Ey is a saddle.
2. For E1(0,1), we have the following results:
1) When 0 < p <2,
(1.1) if 0 <ay <1—2, then B, is a saddle;
(1.2) ifag =1— %, then E7 is non-hyperbolic;
(1.3) if ay > 1— 2, then E; is a stable node.
2) When p =2, Ey is non-hyperbolic.
3) Ifp>2,
(5.1) if 0 <ay < 1 - 9 then Eq is an unstable node;
(3.2) ifap=1-2 then E1 is non-hyperbolic;
(3.8) if ay > 1 — 2, then Ey is a saddle.
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Proof. 1. The Jacobian matrix of system (1.7) at Ey = (0,0) is

_b
el=< 0

0 e

J(Ey) =

Obviously, A\; = e!=¢ and Ay = e”.

Note that [Az2| > 1 is always true. If b < ¢, then |A;| > 1. Therefore, Ey is
an unstable node, i.e., a source; if b = ¢, then |A\;| = 1, so Ey is non-hyperbolic; if
b > ¢, implying |A\;| < 1, then Ej is a saddle.

2. The Jacobian matrix of system (1.7) at E; = (0,1) can be simplified as

follows:

elmu—2 0
J(Ey) =

—azp 1—p

Obviously, A\ = elmm=2 and Ay =1 — p-

When 0 < p < 2, [Ad2] < 1. If 0 < a; < 1 — 2, it means [A;| > 1, then E; is
a saddle; if a; = 1 — 2, then |\;| = 1, so E; is non-hyperbolic; if a; > 1 — %, then

[A1] < 1. Therefore, F; is a stable node, i.e., a sink.
When p = 2, we imply |A\z] = 1, then F; is non-hyperbolic.
When p > 2, [As] > 1. If 0 < a; < 1 — 2, it means [A;| > 1, then E; is an

unstable node; if a1 =1 — %, then |\1| = 1, so Fj is non-hyperbolic; if a; > 1 — %,
then |A1| < 1. Therefore, E; is a saddle.
This completes the proof. O

Theorem 3.2. For the boundary fixed points Eo1, Eas and Eaz of system (1.7), we
have the following results:

1. Assume ¢ < b < % and 0 < ¢ < 1, then Esy exists, and we have the

following results:

1) If0<as < 1_; then Eo1 is an unstable node;

c—\/(1+c)2—4b7
_ 2 ; } .
2) Ifay = Pu— rwws T then Fo1 is non-hyperbolic;

2
3) If az > 1—c—+/(14c)2—ab’
(1+¢)*

2. Assume 0 < b <corc<b< 3~ and 0 <c <1, then Eoy exists, and we
have the following results:

2 . )
1) If0<as < Ry v then Eoo is a saddle;

then Eo1 is a saddle.

_ 2 : _ P .
2) Ifas = PR e Tt then Eoo is non-hyperbolic;

2 .
3) Ifas > POy vy then Eoo is a stable node.
3. Assume b = % and 0 < ¢ < 1, then Fs3 exists, and it is always non-
hyperbolic.

Proof. The boundary fixed points satisfy

1— 29 —a1ye; — =0,y2, =0,

Cc+ To;
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where, i = 1,2,3. The Jacobian matrix of system (1.7) at Es; can be written as

2bxo;+be

J(Eo:) = | (ctm2i)?
( 21) 0 ep(l*(IQCL‘Qi)

—a1T2;

3

where, i = 1,2, 3.

1. It is easy to get that the eigenvalues of J(FE21) are A\; = %gf;;l;’g and Ay =

ep(l—azz21)

In order to compare the quantity A; with 1, noticing that the numerator and
the denominator of A\; are positive, we only need to consider the sign of 2bxo; +
be — (c + z21)%. Notice

VALl +c— AL —2b)

2bxo1 + be — (C + x21)2 =

2 b)
and
l+ec— VA —2b=20(———F+~=—1
1—|—c+\/ )
2
2(——m —1)=0
~ <1+c+(1—c) ) ’

in which we have used the fact that c< band 0 < ¢ < 1.
The above analysis shows that A\; > 1. If 0 < ay < %21, then |Ao| > 1.

Therefore, Eo; is an unstable node; if ay = i then |A2] = 1, so F2; is non-
hyperbolic; if az > —-, we imply [A\1] < 1, then Egl is a saddle.

2. The elgenvalues of J(Eqq) are Ay = %é’f;ﬂ’g and Ay = eP(1-92722)  Similarly,

we have

\/E(1+c+\/E—2b)

2b$22 + be — (C+ CE22)2 = —

= -hvA 1+c—\/A1

From Theorem (2.1), we know that the conditions for the existence of Eao
are0<b<corc§b<%and0<c<l. Let N(b) = 1+c¢— A =
14+c—+/(1+ ¢)?2 — 4b, and note that N(b) is monotonically increasing with respect
to b in the interval (0, %) Therefore, when 0 < b < ¢, we have

~1).

NOb)<N()=1+c—|1—¢ <2
When ¢ <b < %, noticing 0 < ¢ < 1, we have

Ny < v(LE o

)=1l4+c<2.

Accordingly, we can conclude that N(b) < 2 is always true when Eas exists, which
implies 0 < A\; < 1

If 0 < az < =, then [Az| > 1. Therefore, Es; is a saddle; if ap = ;, then
[A2] = 1, so Eqy is non-hyperbohc if as > é, we imply |A;| < 1, then Fas is a
stable node.
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3. The eigenvalues of J(Es3) are Ay = 2brastbe and Ay = eP(1702723) Tt is clear

T (ctw23)?
that
2bxa3 +bc=0b(1—c)+bc=>b
and 1+
¢
(c4@2)? = (=) =,
Therefore, A\ = 1 and FE53 is non-hyperbolic. The proof is completed. O

Theorem 3.3. For the positive fized points of system (1.7), one has the following
consequences.

1. Assume Ag > 0. If A< 0,C >00rA<0,B<0,C=00rA<0B<
0,C<0o0rA>0,B>0,C >0, then E3; exists for x3; < é Let

b(2 + b 2 +
po—2(LCTEO / b Gent0) | a4 1)
(c+ x31) (c+x31)

and

pt= (W +ai1ys — 1) / (W + a1y31> .
(c+ x31) (c+ x31)
The following results hold:
1) Es1 is a source if p < min {ps, pt};
2) Es1 is non-hyperbolic if p = ps;
3) E31 is a saddle if p > ps.

2. Assume Ay > 0. If A >0,C<00rA>0B>0C=00rA<0,B<
0,C<0o0rA>0,B>0,C >0, then E3y exists for x3s < é Let

b(2x39 + ¢ b 2x39 + ¢
pu:2 <(32)2)+a1y32+1> / <y32(32)+y32(a1+1)> .

(C+$32 (C+$32)2

The following results hold:

1) If p < pu, then Eso is a saddle;
2) If p = pu, then Esq is non-hyperbolic;
3) If p > pu, then Esq is a source.

3. Assume Ay =0 and % < a%, then Es3 exists, and it is always non-hyperbolic.

Proof. The positive fixed points satisfy

1 — 3 —a1ys; — =0, 1 —ys —a2z3 =0,
C+ T3
where, i = 1,2,3. Therefore, the Jacobian matrix of system (1.7) at E3; can be
written as

b(2z3,+c)
22T 4+ a1ysi —a1T3;
J(Egl) (ctw3:)? 1Y3i 1234 ,

—Q20Y3; 1 — pysi
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where, i = 1,2, 3.
The characteristic polynomial of Jacobian matrix J(Fs;) is

FA) =X —pA+gq,

where b2 )
xr3; + ¢
p="Tr(J(Es)) = 3712 + (a1 — p)ysi + 1,
(c+ x3;)
b(2x3; + ¢
0= Det(J(By) = LEH D (1 )+ (1= parysr
(C+ 373@')
We have
F(1) =1—Tr(J(E3:)) + Det(J(Es;))
oy (10T
o (¢ + x3:)° ' (3.1)
PT3iY3i
= =7 (24x3; — B),
T3+ ¢ (24zs )
where, i = 1,2, 3.
1. Substituting z3; = B}‘QE into the equation (3.1), we can get
VA
F(1) = PT31Y31 2 < 0.
r31 +¢

Besides,

F(—1)=1+Tr(J(E31)) + Det(J(F31))

b(2x31 + ¢
B ((Jrsl)z) (2 = pys1) + 2a1y31 — (a1 + 1)pys1 + 2,
CT T31

F(=1)> (=,<)0 & p < (=,>)ps,

and

q = Det(J(Egl))

b(2z31 + ¢
= %(1 —pyz1) + (1 — p)aiysa,
(C+Z31)

q— 1> (:7<)0<:>p < (:7>)pt-

By Lemma (1.1), when p < min{ps, p1}, |A\1] > 1, and |Az| > 1. Therefore, E3; is
a source.

When p = ps, F(—1) = 0, therefore E3; is non-hyperbolic.

When p > ps, |A1] <1, and |[A2| > 1, then E3; is a saddle.

2. Substituting x3e = BBF

into the equation (3.1), we can get

32V A
_pPrsaysavie o

F(l) =
() T32 +C

By Lemma (1.1), we have |A1]| > 1.
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Besides,

F(—1) =1+ Tr(J(E32)) + Det(J(FE32))

b(2x32 + ¢
= (Lg) (2 — pys2) + 2a1y32 — (a1 + 1)pys2 + 2,
(C+$32)

F(-1)> (=,<)0 < p < (=,>)pu.

By Lemma (1.1), if p < py, |A2| < 1, then Ej3q is a saddle; if p = p,, Ay = —1, so
Es55 is non-hyperbolic; if p > py, A2 < —1 and |Ag| > 1, therefore Es55 is a source.
3. Similarly, we have F(1) of J(FEj33) is equal to 0, i.e., F/(1) = 0. Therefore,
from Lemma (1.1), E33 is always non-hyperbolic.
The proof is finished. O

4. Bifurcation analysis

In this section, we are in a position to use the Center Manifold Theorem and
bifurcation theorem to analyze the local bifurcation problems of the fixed points
EO, E17 Egl and EQQ. The Stlldy on E‘237 E31, E32 and E33 is left as our future work.
For the related work, we refer to [16,18,20,22,27,28].

4.1. For fixed point Fy = (0,0)

Theorem (3.1) shows that a bifurcation of Ey may occur in the space of parameters
(a1,a2,b,¢,p) € Sg, = {(a1,a2,b,¢,p) € R |ay > 0,a2 > 0,b>0,¢>0,p>0.}.

Theorem 4.1. Set the parameters (a1, a2,b,¢,p) € Sg, = {(a1,a2,b,¢,p) € R%|ay >
0,a2 > 0,b>0,¢>0,p>0.}. Let by = c. If ¢ £ 1, then system (1.7) undergoes a
transcritical bifurcation at Egy, when the parameter b varies in a small neighborhood
of critical value by. If ¢ = 1, then system (1.7) undergoes a pitchfork bifurcation at
Ey, when the parameter b varies in a small neighborhood of critical value bgy.

Proof. In order to show the detailed process, we proceed according to the follow-
ing steps.

Step 1. Giving a small perturbation b* of the parameter b around the critical
value by, i.e., b* = b — by, with 0 < |b*| <« 1, system (1.7) is perturbed into

e —ay— 2 tbo
Tni1 = ape! O TV
(4.1)
Yn+1l = ynep(lfynfa%'pn).
Letting by, = b}, = b*, system (4.1) can be written as
b +bg
1—xp— — 120
Tn41 = Tn€ fnmay eton,
Yn+1 = ynep(l—yn—agzn)y (42)

* I
bi. = br.
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Step 2. Taylor expanding of system (4.2) at (z,,yn, ) = (0,0,0) takes the
form

Tpt1 = A100Tn + @010Yn + @001b) + a20022 + ao20y2
+a002b% % 4 411000 Yn + G101T0bE + a011Ynb
+azo0x? + ao30y> + aoosds® + azioryy,
+a120Tny2 + a021Y2 b5 + 20122} + a1022, b} (4.3)
+a012Ynb’” + a1117,Yn b} + 0(p?), .
Yn+1 = b100Tn + bo10Yn + b200x2 + bo20y2 + b110TnYn

+b30022 + bozoys + b21022Yn + b120TnyZ + 0(p3),

* .
bn+1 - bn’

where

p1 =2 +yi+ (b)2,

@010 = @01 = @020 = @02 = Q011 = AE30 = GE03 — @021 = AQ12 = 07a100 = 17

1 1 ?—2c—1
a0 = — — 1l,a110 = —a1, 0100 = ——,a300 = — 53—,
c c 2c
ai(c—1) a? 1 1 ay
as10 = —————,Q120 = 5 ,QA201 = —,0Q102 = 7270411 = )
c 2 c 2c c
pre’
b1oo = b20o = bzoo = 0, bo10 = €”,bo20 = —pe’, b119 = —azpe’, bozo = 5
2.2 p
a3p’e
borg = 2 5 ,bioo = agp’e’.
Let
ai10o0 ao1o 0 100
J(Eo) = | bioo boio 0 i.e., J(Eg) = | 0e 0
0 0 1 001

Therefore, we rewrite system (4.3) as the following form

Tp41 = Tp + F(T0, 40, by,) + 0(p),
Yn+1 = €Y + G(Tn, yn, 0},) + 0(p}), (4.4)
g1 =0,

where

* 2 2 * 2
F(xn, yn, b)) =a2007; + ao20Y;, + ao02b},” + a110nyn
* * 3 3
+ a101Tnb;, + ao11ynby, + azeo;, + ao3oy;,
* 3 2 2 27%
+ agozby,” + a210%,Yn + A120TnY; + 021950,

2 1% * 2 * 2 *
+ ag017,by, + a1022nby,” + ao12ynby” + a1112,Ynb},
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G(Zny Yn, bly) =boooT2 + bo20Ys + b110TnYn + b300Th
+ bo3oys + b210T2Yn + b120Tn Y2

Step 3. Suppose that on the center manifold
Yn = h(2p, b)) = hoozy + hi1znb), + hoob} + o(p3),
where py = /22 4 b*2. Then, according to

Yn+1 = eph(mn’ b;kl) + G(xﬂv h(zn, b;)v b;) + O(pg),

M(@ni1,05 4 1) =hooa? 1 + h1i1@ns1b ) + ho2 (b4 1)” + o(p3)
=hao(Tn + F (2, h(@n,b5),05))% + ha1(@n + F (20, h(za, b)), b5))b
+ ho2b;? + o(p3)

and Yn41 = h(xn41,b;, 1), we obtain the center manifold equation
P h(@n, b)) + G, M, b}),05) = hao(@n + F(zn, (2, b}),b5))°
+ h1(@n + F (@, h(zn, b)), b))k + hoobl’.

Comparing the corresponding coefficients of terms with the same orders in the above
center manifold equation, we get

hao = hi1 = ho2 = 0.
Hence, system (4.4) restricted to the center manifold takes as
Zpy1 = f1(2n, b)) = xn + F(20, b2, b5,),05) + 0(p3)

1 1 2 _2c—1
=z, +(--1 miffxnbz+;xi
c c 2¢?

1 2 7% 1 *2 3

Therefore, one has

f1 df1 9% f1 1
fl(xmb;)‘o,o :077 =L 3% =Y - :_7#07
OO 0r 00 il Omadbh g  C
821y :2<1_1> 8% _3(-2e-1)
923 | (0,0 c 10z} | (0,0 c?

According to (21.1.42)-(21.1.46) in [23, p507], if ¢ # 1, then 24

n

£ 0.
(0.0)

All the conditions for the occurrence of the transcritical bifurcation are established.
Hence, it is valid for the occurrence of the transcritical bifurcation in the fixed point
Ey.

When ¢ = 1, it is clear that %1’;1

n

3
= 0 and %zél

n

= —6 # 0. From

(0,0) (0,0)
(21.1.70)-(21.1.75) in [23, p511], system (1.7) undergoes a pitchfork bifurcation at

Ey. O
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4.2. For fixed point F; = (0,1)

The fixed point F;(0,1) always exists regardless of what values all the parameters
take. When a; = ajg := 1 — % or p = 2, Theorem (3.1) shows that Fj is a non-
hyperbolic fixed point. As soon as the parameter a; or p goes through corresponding
critical values, the dimensional numbers for the stable manifold and the unstable
manifold of the fixed point F; vary. Therefore, a bifurcation probably occurs. Now,
the considered parameter case is divided into the following three subcases:
Case I: a1 = aq9,p # 2;
Case II: a1 # a19,p = 2;
Case III: a; = a9, p = 2.

First, we consider Case I: a; = a9, p # 2, i.e., the parameters (ai,as,b,c,p) €
O = {(a1,a2,b,¢,p) € R |ag > 0,a2 > 0,0 <b < ¢c,p# 2.}, and let a0 =1 — g.
Thereout, the following result is obtained.

Theorem 4.2. Assume the parameters (a1,a2,b,¢,p) € Q1 = {(a1,a2,b,¢,p) €
R3_|a1 > 0,a0 > 0,0<b<c,p#2}. Letag=1-— %. If age # 1, then system
(1.7) undergoes a transcritical bifurcation at Eq, when the parameter a; goes through
the critical value aqg.

Proof. Let l, = z, — 0,m, = y, — 1, which transforms FE;(0,1) to the origin
0(0,0) and system (1.7) into
lny1 = lnel_l”_‘“(m"“)_ﬁ7
(4.5)
Mpy1 = (mn + 1)ep(_mn_a21n) —1.

Giving a small perturbation aj of the parameter a; around the critical value
ayp, i.€., af = a1 — ajg, with 0 < |a}| < 1, system (4.5) is perturbed into

L1 = lnel—ln—(af+a10)(mn+1)—#7
(4.6)
Mpy1 = (My + 1)eP"mn—azln) 1,
Letting (a})n+1 = (af)n = af, (4.6) can be regarded as
lps1 = lnel_ln_((ai)n"!‘alo)(mn"l‘l)_#bl"’
Mpy1 = (mn + 1)ep(7m”7a2ln) — ]-v (47)
(af)n+1 = (ai)n-
Taylor expanding (4.7) at (I, my, (af),) = (0,0,0) gets
In+1 L0 0) [ & g1 (ln, mn, (a1)n) + 0(p3)
Mo | = | —azp1=p0 | | mn |+ | g2(ln,mn, (a})n) +0(pd) | (48)
(a})n+1 0 0 1 (af)n 0
where p3 = /I3 +m7 + (a)3,

. b b .
91 (Lny M, (@7)n) :(C—2 — 1)1721 + (E — Dlomy, — L(al)n
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1.0 9 bl s b b 9
+lptm -1 - B4 C -G - vim,
b 2 * 1 b 2 2 1 *\2
+ (1 - ?)ln(al)n + 5(7 - 1) lﬂmn + iln( l)n
b
- 7ln n 1 mny
p mp(ay)
. a2 02 2
g2 (lna Mp, (al)n) = 22/) li + (G2P2 - a?p)lnmn + (p2 - P> mi
_ a§p3 n (@%PQ - a%pg)limn + a2p2 _ asp® lnmi
6 2 2
3 2 _ 3
L3
6
1 0 0
Let A= | —ayp1—p 0| . Then, we derive the three eigenvalues of A as
0 0 1

A1:17 )\2:1*% A3:17
and the corresponding eigenvectors
(617 m, QOI)T = (1a —asz, O)T7 (527 n2, SDQ)T = (07 17 0)T7 (537 n3, 903)T = (07 07 1)

respectively. Notice that 0 < p # 2 implies that |Ao| # 1.
& &2 &3

Take T'= | n; ny n3 | , namely,

Y1 P2 P3
1 00 100
T=|-a,10/|, then TP =|g,10
0 01 001
ln u'll
The transformation | m, | =T | v, | changes system (4.7) into
(aik)n on
Ui 10 0\ (un 93 (tn, v, 6n) + 0(p)
Unt1 | = |101=p0 Vn | | 94 (Un, vn, 6) + 0(pi> )
Ont1 0 0 1 On 0

where

pi = VB L+ 5,

T

(4.9)



Dynamics of a Discrete Two-Species Competitive Model 509

g3 (unv Un,y 6n) =0 (unv —Q2Up + Un, §n) ,

94 (una Un, (Sn) = a201 (un; —A2Uy + Up, 5n) + g2 (uru —A2Up + Un, 5n) .
Assume that on the center manifold
Up, = h(tp, 0,) = aQOUi + a11un0p + a025,2L + o(pg),

where p5 = \/u2 + 02. Then, from
Unt1 =(1 = p)h(un, 6yn) + azgr (Un, —azty, + vy, 6n)
05 (tns 2t + 1, 50) + 0(p2),
h(tnt1,0nt1) =a20Us 1 + Q11105 + 0202 4 + 0o(p7)
=a20 (tn + g1 (tUn, —Q2Un + U, 0,))°

+ a1y (Un + g1 (Un, —a2tp + U, 6,)) 5p + a0262 + 0(p3)
and vy4+1 = h(tn41,0n+1), we obtain the center manifold equation
(1 = p)h(un,6n) + azgr (Un, —a2un + vn, 0y)
+ g2 (tn, —astun + v, 6,) + 0(p3)
=ag0 (un + g1 (U, —a2uy + Up, (5n))2
+ a11 (un + g1 (Un, —a2un + Up, 0,)) O + aogéi + o(pg).

Comparing the corresponding coefficients of terms with the same order in the above
center manifold equation, it is easy to derive that

ag b an

azo=— | 5 —1),a11=——,0a02=0.
p \c p

Therefore, system (4.9) restricted to the center manifold is given by

1 —asc)(b—rc
Unt+1 = fo(tn,0pn) := up + %u% — UpOp + a(pg).
1

Hence, the following results are derived:

df2 df2
f2(una6n)| 0,0 :037 :137 :07
o O |(0,0) 9n |(0,0)
02 fy 0% fy (1 —age)(b—c)
Ouy, 00y, 0,0) 70, ou? (0,0) c? 7

According to (21.1.42)-(21.1.46) in [23, p507], when asc # 1, all the conditions for
the occurrence of the transcritical bifurcation are satisfied. Hence, system (1.7)
undergoes a transcritical bifurcation at the fixed point E;. The proof is over. [

Next, one studies Case II: a1 # a19, p = 2. By the Theorem (3.1), one can see
that [A;| # 1 and Ay = —1, when a1 # ajg,p = 2. Thereout, the following result
can be derived.

Theorem 4.3. Suppose that the parameters (a1, az, b, ¢, p) € Qo = {(a1,a2,b,¢,p) €
Ri’_|a1 > 0,a2 > 0,0<b<ca; #1— %,p > 0}. Let pg = 2. If the parameter
p goes through the critical value pg, then system (1.7) undergoes a period-doubling
bifurcation at Ey. Moreover, the period-two orbit bifurcated from Ey lies on the
right of pg and is stable.



510 X. Jin & X. Li

Proof. Shifting E; = (0,1) to the origin O = (0,0) and giving a small perturba-
tion p* of the parameter p at the critical value py with 0 < |p*| < 1, system (4.5)
is transformed into the following form

ln—i—l = lnel_ln_al (mn+1)_ﬁ7
(4.10)
Mpt1 = (mn + 1>e(p*+p0)(_mn_a2ln) — 1.
Set py 1 = py, = p*. Then (4.10) can be seen as
ln+1 — lnel_lw,_al(mn"!‘l)_rbln’
M1 = (Mg + 1)elPrteo)(=ma—azls) _ 1, (4.11)
PZ-H = Pn-
Taylor expanding of system (4.11) at (I, My, p)) = (0,0,0) takes the form
lnt1 = c100ln + Co10mn + c200l2 + co20m?Z + cr10lnmy
+e300l2 4 cozom? + ca10l2my, + cr20lnm?Z + o(pd),
Mut1 = diooln + dotomy + doo1p, + doool? + do2om?
+doo2p® + diiolnmn + dioilnpl + dorima (4.12)
+d300l2 + dozom? + doosps” + daiol2my,
+d120mnl% + dozlmipfl + dzoﬂ%p: + leQan:L2
+d012mnP22 + diilnmppy, + 0(,02),
p;szrl = p;kw
where
pe = V12 +m2 + (pj)?
b b b
€010 = Co20 = Co30 = 0, C100 = €' ¢, cagp = (02 - 1) el 7o,
2
s (1w b\ o
crio = —are ¢ e300 = (2 <02 - 1> - c3> e e,
b 2
Co10 = a1 (1 B 2) e TETM g0 = ﬁelfgfal,
C 2
doo1 = do2o = doo2 = dooz = di20 = dip2 = do12 = 0, d100 = —2a2,
doto = do11 = —1,dago = dao1 = 2a3,d110 = 2a2,d101 = —as,
4
d3p0 = *gag,dow = gad210 = —2a3,do21 = 1,d111 = 3as.
We can think of system (4.12) as the following form
ln+1 61_%_(11 00 ln gs (lna My, p;;) + 0(p%)
Mpy1 | = —2a; —10 mn | + | g6 (lns M, p3,) + 0(/7%) ) (4.13)

Pt 0o 01)\s 0
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where

95 (Lns M, i) =C200l2 + co20m, + c110lnmn + 30005
+ cozom? + co10l2my, + crolnm?,
96 (Ln, M, p}y) =doool’ + dozom? + doozp},” + di1olnmmn
+ dio1lnpy, + dorimapy, + dsool;, + dosom;),

+ d003,0:3 + d2101721mn + deOlnmi + dozlmipz

+ doo1 2 0%, + dioalnpt® + doromnpt® + diylymypl.

It is not difficult to derive the three eigenvalues of the matrix

N
A= 720,2 -10
0 01

to be
b_

M =elTeTm Ny =—1and \3 =1,

with corresponding eigenvectors

&1 1 ) 0 &3 0
m| = 51*_%2:121 RN E
©1 0 V2 0 ©3 1

The condition a; # 1 — % shows that A\; # 1.
Set T' = (613 n, 901)5

1 00 1 00
e, T=|—322 10|, then T7'=| 202 1
elm ey elTeT 41
0 01 0 01
Taking the transformation
ln Up,
my =T Un )
[ On

system (4.13) is changed into

Un+1 el_%_al 00 Un gr (Un,Un,(Sn) +0(p§)
?)
7 )

Upy1 | = 0 -10 vn | + | 98 (un, vn,0,) + o(p
Ont1 0 01 On, 0

(4.14)
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where

pr =vui + v+ (0n)?,

—20,2
g7 (u’na Un, (Sn) :g5 (uru Tun + Un, §n> )
el 41
20,2 —2&2
98 (Un, Vn, ) —mgs (Um mun + Un, 5n>
720,2
+ g6 <Un7 mun + vy, 577,) .

Suppose that on the center manifold
Uy = W(Vp, 0p) = bogu? + b11un0, + bo2d2 + o(p3),
where pg = \/m, which must satisfy
Uns1 = h(Unt1,6n1) = €7 E 700, 60) + 97 (B(0n; 60), vn, ) + 0(6).

Similar to Case I, one can establish the corresponding center manifold equation.
Comparing the corresponding coefficients of terms with the same type in the equa-

tion produces
1

b20 = 0>b11 = Tal“

7b02 =0.
(&

Hence, system (4.14) restricted to the center manifold is given by

2
Unt1 = f3<vna Op) = —Vp — Vpbp + 521“721671 + 312Un572; + gvg + 0(/)2),

where

2a9 a161’%’a1
521 = el*%*al +1 <1 — el*%*”’l +1 + 1,

2@2 as
S12 = - .
(el_%—al +1)2 elmemm +1

Next, we calculate the following quantities to judge the occurrence of a period-
doubling bifurcation according to (21.2.17)-(21.2.22) in [23, p516].

One has
I3 (Un, 6n) = Uy + 20,0, + (1 — 2812)v,62 — %vi + 0(p3).
Thereout, the following results are derived:
Ofs of3
Jalvn, 8u)l0o) =0, v (0,0) ~ e, (0,0) -0
n 1(0,0) n=¥n 1(0,0) n 1(0,0)
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Hence, system (1.7) undergoes a period-doubling bifurcation at E;. Again,

P PR
ov3 | 0v,00,
Therefore, the period-two orbit bifurcated from FEj lies on the right of pg = 2.
In addition, one can also compute the following two quantities, which are the
transversal condition and non-degenerate condition respectively for judging the oc-

currence and stability of a period-doubling bifurcation (see [8, 16, 18,20, 22, 24-28,
33)),

=4>0.

(0,0)

(070)7

o (P 1050
'\ 00,06, ' 206, 02

10%s  (18%f5)°
ag = | = + [ =
6 Ovd 2 Ov2
It is clear that oy = —1 and ay = %. Due to as > 0, the period-two orbit bifurcated
from E; is stable. The proof is completed. O
Finally, considering the Case III: a1 = a19,p = 2, one can easily get the two
eigenvalues of the linearized matrix at this fixed point F7 to be Ay = 1 and \s = —1.

A fold-flip bifurcation may occur and the bifurcation problem is very complex. This
is left as our future work.

(0,0).

4.3. For fixed pOil’lt EQI(LCQI,O) and EQQ(.TQQ,O)

By Theorem (3.2), it is clear that a bifurcation of E2; may occur in the space of
parameters (a1,as,b, ¢, p) € Q3 = {(a1,a2,b,¢,p) € Ri|a1 >0,a0>0,0<c<b<
%, p > 0.}. One has the following consequence.

Theorem 4.4. Assume the parameters (a1,a2,b,c,p) € Q3 = {(a1,a2,b,¢,p) €

5 (1+¢)? S 2

R+|CL1 > O,CLQ > 0,0 <c< b < Tc,p > O} Set a0 = To1 m
Then, system (1.7) undergoes a transcritical bifurcation at Eoy, when the parameter
as varies in a small neighborhood of critical value asg.

Proof. Letl, = z, — z21,v, = yn, — 0, which transforms the fixed point Fs; to
the origin O(0,0), and system (1.7) into

1—(lptz21)—a1mpy — st
lng1 = (In + z21)e ( 2)=a etintrar — poy,

(4.15)

Mpg1 = mnep(lfmnfaz(ln+zz1)).

Giving a small perturbation a3 of the parameter ay around the critical value
asp, i.e., a3 = ag — 5=, with 0 < |a3| < 1, system (4.15) is perturbed into

1—(ln+x21 *almn*+
lns1 = (In +a21)e’ ™ ) cHintea — o,

4.16
1—mn—(a§+ L )(ln-‘rﬁl'z])). ( )

Mp41 = mnep< 2
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Setting (a3)n+1 = (a3)n = ab, system (4.16) can be written as

1-(1 - -
ln-‘rl = (ln + 1’21)6 (Un+az1)—aimn etintzal — oy,

Mpt1 = mnep(l_mn_((a;)7l+$)(l”+w21)) (417)

(a3)n+1 = (a3)n-

Taylor’s expansion of system (4.17) at (I,,, My, (a3)n) = (0,0,0) takes the form

lnt1 = €100ln + €010 + €200l + eo20m? + €110lnmn
+es00l2 + eozom? + ea10l2my, + e120lnmZ + o(r?),
Mut1 = frooln + foromn + foo1(a3)n + faooli + fosoms,
+fo02(a3)n” + friolnmn + fro1ln(a3)n + for1mmn(a3)n
+ 30003 + fozom3 + foos(a3)n’ + farol2mn,
+fr20mnl2 + fozrm?2(a3)n + foorl2(a5)n + frozln(ad)n”
+ foremn (a3)n® + frirlnma(a3)n + o(r$),

(G‘S)HJrl = (G';)na

(4.18)

where r1 = /12 + m2 + ((a3)n)?,

b
ero0 =1+ (()2 - 1> T21, €010 = —A1T21,

1 b b 2 2bxo1
o=y 2 (rar =) * (e ) - ]

1, b
€020 =5 01221, €110 = —01 ((W - 1) T21 + 1) )

1 b 2 b 1 b 8
ewo =3 (riay ~1) vy 8 (e 1)

+ bl‘gl _ bl‘21 ( b . 1)

(c+xa1)t  (c+x21)® \(c+w21)? ’
ai1bxoa ai1xa1 b 2 b
N CER N R ((C+ 291)? 1) o ((C+ 21)? 1) ’
2

€030 = — %a?ﬂﬂm,elzo = % K(C-i-l;“my - 1) Ta1 + 1} ,

flOO :f001 = f200 = f002 = flOl = fSOO = f003 = f201 = f102 = 07
2

p p
foro =1, fo2o = —p, fi10 = —, fou1 = —p=xa1, foz0 = =,
T21 2
2 2 2.2

P P px
fa10 272 3 s J120 = —, fo21 = P2$217f012 = 21
T o1 2

,f111 :P2 - p.
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It is simple to compute

(C+1‘21)2 T C+CC21’

and system (4.18) can be seen as the form

b 1 VA,

lnt1 1+ %ﬁl —a1721 0 Iy b (L, i, (3)n) + O(TZI)))
M1 | = 0 L0 | ma |+ | he(n,ma, (a3)n) +o(r}) | -
(@3)n+1 0 0 1 (a3)n 0
(4.19
where

1 (L, M, (a3)n) =e200l2 + €o20m? + €110l + e300l
+ eogomi + Bglol%mn + 612017,,771?“
ha (L, M, (03)n) =fa00l2 + fozom? + fooz(ab)n” + friolnmn
+ fro1ln(a3)n + forimn(ad)n + faools + fosoms
+ foos(a3)n’ + for0l2mn + frzolam?2 + foarm?(a3),
+ 20112 (a5)n + fro2ln(a3)n” + forzmn(a3)n” + frirlnma(a)n.

It is easy to derive the three eigenvalues of matrix

1 + 7@;;?1 —a1T21 0
A= 0 1 0
0 0 1
to be VA
Aqx
M=14+22 n5=1
C+ x21
with corresponding eigenvectors
& 1 &2 M(%Ale) €3 0
ml|=10]:[m|= 1 s{ms =10
1 0 P2 0 ©3 1
respectively.
1 ai(c+xa1) 0 1 _ai(ctwar) 0

VA, VA,
Set T= |0 1 0o, then 77t = |0 1 0

0 0 1 0 0 1

Taking the transformation
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system (4.19) is changed into

Unt1 R Ay TS hs (tn, Un, 8n) + 0(r)
Upg1 | = 0 10 vn | | ha (un,vn, 60) +0(r3) | (4.20)
Ont1 0 01 On 0

where 1o = \J/u2 + vZ + (d,)2,

(11(0+ £C21)
ha (un7vna 571) =hy (un + Unavn76n>
VA

al(c + le) ( a1 (C + 1‘21) )
— ———ho [ up + — Un, Un,y Op |
VA VA

(Zl(C+ $21)
ha (unavnaén) =hy (un + vnvvn>6n> .
VA

Putting on the center manifold u, = maov? + Mm11v,0, + Me262 + o(r3), where
r3 = /02 + (d,,)2, it is easy to derive

mo2 = 0, map = ¢t a1 (al(al —p)lct+aa) a1p?(c+ x91)

\/lezl \/Z1 Aqzoq
ARl onf ~bow)) |, __aolereu)?
(C+I21)A1 ’ Ay ’

Hence, system (4.20) restricted to the center manifold is given by

aq (C =+ 3?21)

Upt1 = f4(Un,0n) == vn — p (1 - VA
1421

) V2 — pro1v, 0, + o(r3).

Therefore, one has

Ofy Ofs
f4(vna )|00 0 _17 :05
( WOl nl)
D*f4 9% f4 ar(c+ xa1)
—pzo1 # 0, =—-2p <1 + ) #0.
0v, 00, (070) ov 2 (0,0) VAT

According to (21.1.42)-(21.1.46) in [23, p507], all the conditions for the occurrence
of the transcritical bifurcation hold. Hence, system (1.7) undergoes a transcritical
bifurcation at the fixed point E5;. The proof is over. O

Next, we consider the situation for the existence of the fixed point Ey5. By
Theorem (3.2), it is clear that a bifurcation of system (1.7) at the fixed point Esag
may occur in the space of parameters (a1, as,b,¢,p) € Q4 = {(a1,a2,b,¢,p) €

R3lay > 0,02 >0,p>0,0<b<cor0<c<b< S <1}

Theorem 4.5. Assume that the parameters (a1, as, b, ¢, p) € Q4 = {(a1,a2,b,¢,p) €
2

Ri|a1>Oa2>0p>00<b<corO<c<b<M<1} Let

a9 = é = — H\/m If a1(c + z22) # VArxas, system (1.7) undergoes

a transcritical bifurcation at Eao, when the parameter as varies in a small neigh-
borhood of critical value as.
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Proof. Similar to the situation of Ea1, by shifting Fso to the origin, giving a small
perturbation a}, as well as appending the dependent variable (a3), to the phase
space and performing Taylor expansion, system (1.7) is changed into the following
form

Int1= €100ln + €010mn + e200l2 + €020m3 + €110lnmmy
+e300l3 + eozomS + ea10l2my, + e120l,m2 + o(r3),
Mpy1 = frooln + foromn + foor(a3)n + fa00lz + fo2om?,
+ foo2(a3)n” + friolaman + frorln(a3)n + forima(as)n
+fa00l3 + fozom3 + foos(a3)n’ + farol2my,
+fr20mnl2 + fozrm?2(a3)n + foorl2(a3)n + frozln(ab)n’
+for2mn (a5)n” + frurlnmn (a3)n + o(r}),

(a3)n+1 = (a3)n,

(4.21)

where 74 = \/Z% +m2 + ((a3)n)?,

e =1+ <(C+bx22)2 - 1) T2, €010 = —A1T22,
1 b b 2 29y

€200 =5 2 <(c+ 222)? — 1) + ((c—l— 222)? - 1) Too — 7(0—1— m22)3] )
1, b

€020 =5 01722, €110 = —01 (((ch ) 1) w22 + 1) ;

€300 - (b - 1>2 L + ! (b - 1>31‘22
2 \ (c+ z92)? (c+m22)3 6 \ (c+ 292)?

1 a? b
€030 = — 605’3322,6120 =2 [()2 - 1> o2 + 1] ;

2 (C—I-LL'QQ
f1o0 =foo1 = fa00 = fooz = fio1 = f3o0 = foo3 = f201 = fi02 = 0,
p p?
foro =1, fo2o = —p, fi10 = —, fo11 = —px22, foz0 = =,
I22 2
2 2
14 14 p-x
Ja10 :ﬁ7f120 = —, fo21 = P2$22,f012 = 7227f111 = P2 - P
I22 o9 2

in which we only need to replace x2; with 295 in equation (4.18).
It is easy to derive

(C+$22)2 _—C+.’£22,

b 1 VA,
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and system (4.21) can be seen as the form

lnt1 1- %’;2 —a12 0 In hs (lns M, (a5)n) + o(r)
Mp41 — 0 1 0 My, + | he (lna My, (OJ;)n) + O(Ti) ’
(a3)n+1 0 0 1 (a3)n 0
where

s (L, M, (@3)n) =€200l2 + eozom? + e110lnmn + €300l>
+ eosomy + ea10lnmn + €120lnmi,
he (Lns M, (a3)n) = fa00l2 + fo2om? + fooz(a3)n” + friolnmmn
+ f101ln(a5)n + for1mn(a3)n + faools + fosoms,
+ foos(a3)n” + farol2mn + frzolam? + form?(a3)y,
+ fa01l2(a3)n + froaln(a3)n” + forzmn(a3)n® + fiirlema(a3),

Then, the three eigenvalues of matrix

1 _ \/ZITQQ

o, —01%22 0
A= 0 1 0
0 0 1
are
A = 1—%,A2,3 -1
with corresponding eigenvectors
&1 1 &2 —7%(\7%?22) &3 0
m|=10]:|m|= 1 sl =10
©1 0 ©Y9 0 3 1

respectively.
Set T' = (51) m, 801)5

1 — ay(ctxaz) 0

ay (c+za2)
RV VI 1 ——=20

VA,
ie., T= 1|0 1 0. Then T7'=|0 1

Taking the transformation

m, | =T | v,

(a‘z)ﬂ 6n
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system (4.22) is changed into

Un i1 1— %ﬂsz? 00 Up, hy (U, v, 0n) + 0(7“53))
Unt1 | = 0 10 Un |+ | hs (un, v, 00) +0(73) | (4.23)
where 15 = /u2 + v2 + (5,2,

ar(c+ z22) )
h unvvnvén =h Up — 71}77.7”77,7571
o )=is =

a1(c+ wa2) ( ai(c+ x22) )
+ ———he | up — — Un, Un,y On |
va, ¢ VA,

ar(c+ z22) )
h Un7’l)n,5n =h Up — 71}717”77,7571 .
e

Putting on the center manifold u,, = lagv2 + 110,08, + lo202 + o(r2), where rg =
v2 + (6,)2, it is easy to derive

oy = 0.1y — ¢+ Too (—pal(c-i- T92) N atp(c+ x2)?
VA 72 VA, ASEP
B brosa? ) o _@1P(C+$22)2
(c+ z22)A1 )’ e Aq '

Hence, system (4.23) restricted to the center manifold is given by

ai(c+ w22) 2 2
Un+1 = fS(Una 611) =Up+p ( - 1) Uy — prQ'Un(Sn + O(T )
\/Z13322 ‘

Therefore, one has

Ofs dfs
J5(Vns6n)l0,0) = 0, 37— =15 =0,
o 9n | (0,0) 9n {(0,0)
62f5 82f5 ay(c+ wa2)
Y )
87.)'”8571 (0~0) av% (O’O) AleQ

According to (21.1.42)-(21.1.46) in [23, p507], when a1(c 4 292) # VAixo, we

% fs
ov2

n

# 0, and all the conditions for the occurrence of the transcritical
(0,0)
bifurcation are true. Therefore, system (1.7) undergoes a transcritical bifurcation
at the fixed point Fos. O

have

5. Numerical simulation

In this section, the bifurcation diagrams and Lyapunov exponents of system (1.7)
with the specific parameter values are presented by Matlab software, which verify
our theoretical results and reveal some new dynamical behaviors in system (1.7).
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We choose the parameters a; = 0.5,a2 = 1,b = 0.4,c = 0.5, let the parameter
p vary in the interval (1.5, 3) and take the initial values (zg,yo) = (0.1,0.1) for E.
Since the bifurcation diagram of (p,x)-plane is similar to that of (p,y)-plane, we
will only show the latter. Then, we can obtain Figure 1(a) and observe the existence
of period-doubling bifurcation, when p = py = 2, which is in accordance with the
result in Theorem (3.3). Figure 1(b) means the spectrum of maximum Lyapunov
exponent of system (1.7), which displays that the maximum Lyapunov exponent is
positive for p greater than some critical value pg. This implies the birth of chaos,
which is consistent with Figure 1(a).

25 ©10° Maximal Lyapunov exponents

05

Max.Lyap
Lh A A o kN ow s o o o~

0
15 2 25 3 5 2 25 3
3 »

(a) p € (1.5,3) (b) p € (1.5,3)

Figure 1. Bifurcation of system (1.7) in (a, y)—plane and maximal Lyapunov exponent

6. Discussion and conclusion

In this paper, we discuss the dynamical behaviors of a discrete two-species compet-
itive model with Michaelies-Menten type harvesting in the first species. Under the
given parametric conditions, we show the existence and stability of the nonnegative
equilibria Ey = (0,0), By = (0,1), Es; and Ej3;, where i = 1,2,3. Then, we de-
rive the sufficient conditions for transcritical bifurcation, pitchfork bifurcation and
period-doubling bifurcation to occur. Case III for the bifurcation analysis of fixed
point E(0,1) and the bifurcation analysis of Ea3, Es3; are left as our further work,
where i = 1, 2, 3. Finally, numerical simulation confirms the theoretical analysis re-
sults. Our analysis displays that the dynamical behaviors of system (1.7) are very
complex: the tiny changes of some parameters lead to the essential varies of the
structural rule of system (1.7).
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