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Dynamics of a Degenerately Damped Stochastic
Lorenz-Stenflo System∗

Liangke Zhou1 and Caibin Zeng1,†

Abstract It seems that little has been known about the sensitivity of steady
states in stochastic systems. This paper proves the conditions for the existence
of an invariant measure in a degenerately damped stochastic Lorenz-Stenflo
model. Precisely, the solution is proved to be a nice diffusion via the Lie
bracket technique and non-trivial Lyapunov functions. The finiteness of the
expected positive recurrence time entails the existence problem. On the other
hand, a cut-off function is constructed to show the non-existence result through
a proof by contradiction. For other interesting cases, the expected recurrence
time is shown to be infinite.
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noise-induced stabilization.
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1. Introduction

To describe the low-frequency and short-wavelength acoustic-gravity perturbations
in the atmosphere, Stenflo [22] derived a four-dimensional continuous-time dynam-
ical system given by 

dx

dt
= a(y − x) + rw,

dy

dt
= cx− y − xz,

dz

dt
= xy − bz,

dw

dt
= −x− aw,

(1.1)

where x, y, z, w are state variables of the so-called Lorenz-Stenflo equation (1.1),
and positive parameters a, c, r are the Prandtl, generalized Rayleigh and rotation
numbers respectively, and b is the geometric parameter.

Obviously, one can reduce (1.1) to the usual Lorenz system in [15] with inter-
esting mathematical properties, if the rotation of the earth is not considered. In
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the past decades, many scholars studied its complex dynamical behaviors such as
boundedness [24, 33], periodicity [17, 28], bifurcation [26, 29, 30, 34], synchroniza-
tion [6], chaotic and hyperchaotic dynamics [9,19,25,27] as well as the influence of
Lévy noise [12].

Notice that the geometric parameter b is strictly positive as shown in the deriva-
tion of (1.1). But it will tend to zero under the sufficiently large generalized Rayleigh
number. On the other hand, the so-called Homogeneous Rayleigh-Bénard (HRB)
system was established with b ≤ 0 appearing in the temperature equation [3, 4].
Indeed, a similar degeneracy effect was observed in a certain zero Prandtl limit for
modeling mantle convection [20,23]. Therefore, it is natural to investigate the cor-
responding dynamics of (1.1), when b ≤ 0. However, it is straightforward that the
corresponding solution to (1.1) on the z-direction explodes in finite time under the
initial conditions (x0 = y0 = w0 = 0, z0 ̸= 0) provided that b < 0. As for the case
b = 0, any point on the z-axis becomes an equilibrium. Thus, one can prove the ex-
istence of singularly degenerate heteroclinic cycles, even there is no compact global
attractor in this situation. Therefore, both embarrassing cases motivate us to study
the possibility of stabilizing the dynamics by adding external noise perturbations.

It is well-known that arbitrary small additive noise can stabilize an explosive
ordinary differential equation (ODE) [16, 18]. If, in addition, the corresponding
Markov process admits an invariant probability measure, it corresponds to the so-
called noise-induced stabilization problem. In this respect, considerable interest has
already been shown in studying stationary states, stable oscillations and the related
work [1, 2, 5, 7, 8, 10,11,13,14,21,31,32].

Motivated by the aforementioned discussion, we are interested in the stochastic
Lorenz-Stenflo system

dx = (a(y − x) + rw)dt+
√
2κ1dB1,

dy = (cx− y − xz)dt+
√
2κ2dB2,

dz = (xy − bz)dt+
√
2κ3dB3,

dw = (−x− aw)dt+
√
2κ4dB4,

(1.2)

where Bi, i = 1, 2, 3, 4 are independent and standard Brownian motions, and κi ≥
0, i = 1, 2, 3, 4 represent the intensity of random noise and other parameters conform
to the ones in system (1.1). To ensure system (1.2) is genuinely stochastic, we require
that at least one κi is positive.

In the absence of noise, we know that the solutions are explosive or have no
compact global attractor when b ≤ 0. The interesting question here is whether
the presence of noise induces the existence and the number of invariant probability
measure for the generated Markov transition semigroup.

The paper aims to solve the noise-induced stabilization problem of (1.2) with
additive Brownian noise by applying the way in [7,32]. More precisely, we first state
the philosophy of proving the existence of a unique invariant probability measure
for the Markov transition semigroup generated by (1.2). The first step is to verify
the non-explosion of the solution to (1.2) under a suitable Lyapunov function and
Young’s inequality. Then, Lie bracket over the vector fields shows that such a
solution is a nice diffusion. The final step is to acquire the globally finite expected
returns to some compact set by constructing another Lyapunov function. As for the
non-existence under a highly degenerate noise, we construct a cut-off function and
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set forth the proof by contradiction. However, for the case b < 0, we shall directly
prove that the expected recurrence time is infinite.

The rest of this paper is organized as follows: in Section 2, we collect necessary
definitions, notations and criteria. Section 3 includes our main results, together
with detailed proofs.

2. Preliminaries

LetMnk be an n×k real matrix and consider the following Itô stochastic differential
equation

dXt = F (Xt)dt+G(Xt)dBt, (2.1)

where F = (F1, . . . , Fn) ∈ C2(Rn;Rn), G = (G1, . . . , Gk) ∈ C2(Rn;Mnk), and
Bt = (B1

t , . . . , B
k
t )

T represents a standard k-dimensional Brownian motion in a
filtered probability space (w,F , {Ft}t≥0,P). For a given function V ∈ C2(Rn;R),
the infinitesimal generator for equataion (2.1) is defined by

LV (X) =F (X)∇V (X) +
1

2
(GGT )(X)∇2V (X)

=

n∑
j=1

Fj(X)∂Xj
V (X) +

1

2

n∑
i,j=1

k∑
l=1

GilGjl(X)∂2XiXj
V (X).

(2.2)

As stated in [7], the smoothness of F and G cannot guarantee the existence of
global solution to (2.1), but one can define a local unique pathwise solution, which
is denoted byXt = X(0, x; t) under the initial conditionX0 = x. Next, we introduce
a stopping time

τ = lim
n→∞

τn,

where τn = inf{t ≥ 0 : |Xt| ≥ n} for n ∈ N+. Thus, there is a unique solution Xt,
for all times t < τ , P-almost surely. Herein, τ stands for the explosion time of the
process Xt, and by which Xt is said to be non-explosive, if

Px{τ <∞} = 0 for all initial conditions x ∈ Rn.

Therefore, ifXt is non-explosive, it can generate a Markov process, and its transition
probability measure is defined as Pt(x, ·) = Px{Xt ∈ ·}. Denoted by B the Borel
σ-field of subsets of Rn, the Markov transition semigroup satisfies

PtV (X) = EXV (Xt) =

∫
Rn

V (Y )Pt(X, dY ), X ∈ Rn,

and

πPt(A) =

∫
Rn

π(dX)Pt(X,A), A ∈ B,

for the bounded, B-measurable functions V : Rn → R, where E denotes the corre-
sponding expectation. Indeed, a positive measure π is invariant for Pt if πPt = π
for all t ≥ 0. An invariant measure π for Pt is an invariant probability measure for
Pt provided that π(Rn) = 1.

To realize our purpose, we next introduce two concepts to tell either the exis-
tence or the non-existence of an invariant probability measure and several notations
related to the Lie bracket.
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Definition 2.1. In an open set U ⊆ Rn, the differential operator A is called hypo-
elliptic, if for any distribution u ∈ V ⊆ U , Au ∈ C∞(V ) yields u ∈ C∞(V ).

Definition 2.2. Denote by Xt the solution to (2.1). Suppose that Xt is non-
explosive and satisfies

(1) F ∈ C∞(Rn;Rn) and G ∈ C∞(Rn;Mnk);

(2) the operators L,L∗,L ± ∂t,L∗ ± ∂t are hypoelliptic on the respective domains
Rn, Rn, Rn × R+, Rn × R+, where L∗ is the formal adjoint of L with respect
to the L2(Rn; dx) inner product;

(3) the support supp(Pt(X, ·)) = Rn, ∀ t > 0, X ∈ Rn.

Then, Xt is called a nice diffusion.

Recall that for two smooth vector fields
U(X) =

n∑
j=1

U j(X)
∂

∂Xj
,

W (X) =

n∑
j=1

W j(X)
∂

∂Xj
,

the Lie bracket of them is defined by

[U,W ](X) =

n∑
j,k=1

(
Uk(X)

∂W j(X)

∂Xk
−W k(X)

∂U j(X)

∂Xk

)
∂

∂Xj
.

It allows us to introduce the following notations

ad0U(W ) =W,

ad1U(W ) = [U,W ],

admU(W ) = ad1U(adm−1U(W )), for m ≥ 2.

In particular, let us denote

n(X,W ) := max
j=1,...,n

deg(pj) where pj(λ) :=Wj(λX),

when W polynomially depends on the components of X for any X ∈ Rn. Thus, for
any collection of vector fields G on Rn, let

cone≥0G =

{
N∑
j=1

λjUj : {λ1, . . . , λN} ⊂ [0,∞), and {U1, . . . , UN} ⊂ G

}
.

Since we are only interested in the situation that G is independent of X and F is a
polynomial, we further denote

G0 := span{G0, . . . , Gk},

GO
1 := G0 ∪

{
adn(G,F )G(F ) : G ∈ G0, n(G,F ) is odd

}
,

GO

1 :=
{
G ∈ GO

1 : G is a constant vector field
}
,

GE
1 :=

{
adn(G,F )G(F ) : G ∈ G0, n(G,F ) is even

}
,

G1 := span
(
GO
1

)
+ cone≥0

(
GE
1

)
.
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For j > 1, we pause to denote that

G̃O
j =

{
adn(G,F )G(H) : G ∈ GO

j , H ∈ Gj , n(G,H) is odd
}
,

G̃E
j =

{
adn(G,F )G(H) : G ∈ GO

j , H ∈ Gj , n(G,H) is even
}
,

by which, we let

GO
j+1 := GO

j ∪ G̃O
j ,

GO

j+1 :=
{
G ∈ GO

j+1 : G is a constant vector field
}
,

GE
j+1 := GE

j ∪ G̃E
j ,

Gj+1 := span
(
GO
j+1

)
+ cone≥0

(
GE
j+1

)
.

Next, we extract some criteria from [7], which are useful to conclude the existence
or non-existence of an invariant probability measure.

Lemma 2.1 (Proposition 2.1, [7]). Assume that F,G ∈ C2 and let Xt be the solu-
tion to (2.1) with the corresponding infinitesimal generator L defined in (2.2).

(i) Suppose that there is a function V ∈ C2(Rn; [0,+∞)) such that V (X) → ∞
as |X| → ∞ and

LV (X) ≤ pV (X) + q, ∀X ∈ Rn,

for p, q > 0. Then, Xt is non-explosive.

(ii) Assume that Xt is non-explosive and there is a function V ∈ C2(Rn; [0,+∞)),
a compact set K ⊆ Rn and constants p, q > 0 such that

LV (X) ≤ −p+ q1K(X), ∀X ∈ Rn.

Then,

EXξK ≤ V (X)

p
, ∀X ∈ Rn,

where ξK := inf {t ≥ 0 : Xt ∈ K} represents the first hitting time of K by Xt.

Lemma 2.2 (Theorem 2.2, [7]). Let V1, V2 ∈ C2(Rn;R). If

(i) lim sup
|X|→∞

V1(X) = ∞;

(ii) V2 is strictly positive outside of a compact set;

(iii) lim sup
S→∞

max|X|=S V1(X)

min|X|=S V2(X)
= 0;

(iv) there exists an R > 0 such that

LV1(X) ≥ 0 and LV2(X) ≤ 1, ∀ |X| > R,

where ξR = inf{t ≥ 0 : |Xt| ≤ R}.

Then, there exists M ≥ 0 such that EX∗ξR = ∞, whenever |X∗| ≥ R and V1(X∗) ≥
M .
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Lemma 2.3 (Theorem 2.6, [7]). Let F be a polynomial and G be X-independent.
If the solution Xt to (2.1) is non-explosive and

span

H ∈
⋃
j≥0

GO
j : H is a constant vector

 = Rn,

then Xt is a nice diffusion.

Lemma 2.4 (Proposition 2.5, [7]). Suppose that Xt is a nice diffusion, the following
statements hold.

(1) There is at most one invariant probability measure for Pt;

(2) Pt has an invariant probability measure, if and only if there exists R > 0 such
that EXξR <∞,∀ X ∈ Rn and the mapping X 7→ EXξR is bounded on compact
subsets of Rn.

3. Main results

First, we focus on the hypo-ellipticity and irreducibility. Namely, we prove that
the solution is non-explosive by Lemma 2.1(i) and a nice diffusion with specific
parameters via Lemma 2.3. Thanks to Lemma 2.1(ii), we turn to construct a
suitable Lyapunov function and show its boundedness, by which we are able to
prove the existence of a unique invariant probability measure based on Lemma 2.4.
Nevertheless, we demonstrate the non-existence result through Lemma 2.2.

In the sequel, we will denote by Xt = (xt, yt, zt, wt) the solution to (2.1). In
order to guarantee that system (2.1) is genuinely stochastic, we always assume∑4

i=1 κ
2
i ̸= 0.

3.1. Nice diffusion

Theorem 3.1. For a, b, c ∈ R, r ≥ 0 and κ1, κ2, κ3, κ4 ≥ 0, solution Xt to (1.2)
is non-explosive. Moreover, it is a nice diffusion provided that κ1, κ4 > 0 and
κ22 + κ23 ̸= 0.

Proof. To prove the first assertion, let r > 0, and we take

H(x, y, z, w) =
1

2

[
1

r
x2 + y2 +

(
z − c− a

r

)2
+ w2

]
,

and the corresponding infinitesimal generator reads

L =(a(y − x) + rw)∂x + (cx− y − xz)∂y + (xy − bz)∂z + (−x− aw)∂w

+ κ1∂
2
x + κ2∂

2
y + κ3∂

2
z + κ4∂

2
w.

A direct computation leads to

LH =− a

r
x2 − y2 − bz2 + b

(
c+

a

r

)
z − aw2

+
κ1
r

+ κ2 + κ3 + κ4.
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We need to find p, q > 0 such that LH ≤ pH + q, i.e.,

LH = −a
r
x2 − y2 − bz2 + b

(
c+

a

r

)
z − aw2 +

κ1
r

+ κ2 + κ3 + κ4

≤ p

2

[
1

r
x2 + y2 +

(
z − c− a

r

)2
+ w2

]
+ q.

Therefore, one has

− a

r
<

p

2r
,

− a <
p

2
,(

1

2
p+ b

)
z2 − (p+ b)

(
c+

a

r

)
z +

1

2
p
(
c+

a

r

)2
+ q −

(κ1
r

+ κ2 + κ3 + κ4

)
> 0.

Let us fix p ≥ 0 such that

p > −2a and p > −2b.

Then, we choose q ≥ 0 such that

q >
1

2

(p+ b)2

p+ 2b

(
c+

a

r

)2
− 1

2
p
(
c+

a

r

)2
+
(κ1
r

+ κ2 + κ3 + κ4

)
.

Thus, the required condition in Lemma 2.1(i) is reached when taking V = H. As

for r = 0, let V (x, y, z, w) = 1
2

[
x2 + y2 + (z − c− a)

2
]
. The required condition in

Lemma 2.1(i) also holds.
Therefore, it remains to show that system (1.2) satisfies the spanning condition

in Lemma 2.3. Then, it turns out that Xt is a nice diffusion. For this purpose,
using the Lie bracket, we have

F = [a(y − x) + rw]∂x + (cx− y − xz)∂y + (xy − bz)∂z + (−x− aw)∂w,

G1 =
√
2κ1∂x,

G2 =
√
2κ2∂y,

G3 =
√
2κ3∂z,

G4 =
√
2κ4∂w.

By considering F,G1, G2, G3, G4 as vectors, we can get

F (λG1) = (−aλ
√
2κ1, cλ

√
2κ1, 0,−λ

√
2κ1)

T .

Therefore, we verify that n(G1, F ) = 1. Then, we get

G′
1 := ad1G1(F ) = [G1, F ]

= −a
√
2κ1∂x + (c− z)

√
2κ1∂y + y

√
2κ1∂z −

√
2κ1∂w

∈ GO
1 .

Hence, by n(G2, G
′
1) = 1, it holds that

G̃3 := ad1G2(G
′
1) = [G2, G

′
1] =

√
4κ1κ2∂z ∈ GO

2 .
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On the other hand, from n(G3, G
′
1) = 1, it follows

G̃2 := ad1G3(G
′

1) = [G3, G
′

1] = −
√
4κ1κ3∂y ∈ GO

2 .

There are only three cases:

(1) G1, G2, G̃3, G4 ∈
⋃

j≥1 GO
j if κ1, κ2, κ4 > 0,

(2) G1, G̃2, G3, G4 ∈
⋃

j≥1 GO
j if κ1, κ2, κ4 > 0,

(3) G1, G2, G3, G4 ∈
⋃

j≥1 GO
j if κ1, κ2, κ3, κ4 > 0,

which satisfy the required spanning condition. Therefore, the proof of Theorem 3.1
is completed.

3.2. Existence of invariant probability measure

We will be led in the sequel to consider the degenerately damped situation, where
b = 0. Thus, (1.2) can be reduced as

dx = (a(y − x) + rw)dt+
√
2κ1dB1,

dy = (cx− y − xz)dt+
√
2κ2dB2,

dz = xydt+
√
2κ3dB3,

dw = (−x− aw)dt+
√
2κ4dB4.

(3.1)

Our task here is to construct a suitable Lyapunov function that ensures in a globally
finite expected return subject to some compact set. For this purpose, we take

V =
1

2

[
1

r
x2 + y2 + z2 − 2

(
c+

a

r

)
z + w2 + κ0

]
+
n1yθ1(x, y, z, w)

xz
+
n2θ2(x, y, z, w)

2κ1

(
R2

1

|z| 23
− x2

)
,

whose detailed construction is put in the Appendix A for the sake of readers’ con-
venience.

Theorem 3.2. Assume that b = 0. If κ1 > 0 and κ2, κ3, κ4 ≥ 0, there exists an
R > 0 such that for any S > 0,

sup
|X|≤S

EXξR <∞,

where ξR is the return time to the ball of radius R. Furthermore, system (3.1)
possesses a unique invariant probability measure provided that κ1, κ4 > 0 and κ22 +
κ23 ̸= 0.

Proof. Before proceeding any further, we emphasize that C > 0 is independent of
R0, R1, R2, R3 and κ0, n1, n2 unless explicitly stated otherwise (more details about

C are in the appendix A). Meanwhile, we let X ′ = x2 + y2 + w2 and X ′′ = |x||z| 13
for the sake of simplicity.

Regarding Lemma 2.1(ii), we observe that

M(V ) = M(H̃) +

2∑
i=1

(
θiM(ψi) + ψiM(θi) + 2∇κθi · ∇κψi

)
, (3.2)
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where∇κ = (κ1∂x, κ2∂y, κ3∂z, κ4∂w), andM, H̃, ψ1, ψ2 are as in (A.1), (A.3), (A.6),
(A.8) in the Appendix A. To estimate each term in (3.2), we proceed to their
derivatives fall on the cut-off functions θ1 and θ2 (as in (A.11), (A.12)). In fact, it
follows that for θ1,



∂xθ1 ≤ C

R
1
2
0

1R0≤X′≤2R0
+
C|z| 13
R1

1R1
2 ≤X′′≤R1

,

∂yθ1 ≤ C

R
1
2
0

1R0≤X′≤2R0 ,

∂zθ1 ≤ C|x|
R1|z|

2
3

1R1
2 ≤X′′≤R1

+
C

R3
1R3

2 ≤|z|≤R3
,

∂wθ1 ≤ C

R
1
2
0

1R0≤X′≤2R0 ,

and



∂2xθ1 ≤C(R0 + 1)

R0
1R0≤X′≤2R0

+
C|z| 23
R2

1

1R1
2 ≤X′′≤R1

+
C|z| 13
R1

1
R0≤X′≤2R0,

R1
2 ≤X′′≤R1

,

∂2yθ1 ≤C(R0 + 1)

R0
1R0≤X′≤2R0

,

∂2zθ1 ≤ C|x|2

R2
1|z|

4
3

1R1
2 ≤X′′≤R1

+
C|x|
R1|z|

5
3

1R1
2 ≤X′′≤R1

+

(
C|x|

R1R3|z|
2
3

1R1
2 ≤X′′≤R1

+
C

R2
3

)
1R3

2 ≤|z|≤R3
,

∂2wθ1 ≤C(R0 + 1)

R0
1R0≤X′≤2R0

.

However, for θ2, one has



∂xθ2 ≤ C

R
1
2
2

1R2≤X′≤2R2 +
C|z| 13
R1

1R1≤X′′≤2R1 ,

∂yθ2 ≤ C

R
1
2
2

1R2≤X′≤2R2
,

∂zθ2 ≤ C|x|
R1|z|

2
3

1R1≤X′′≤2R1
+

C

R3
1R3

2 ≤|z|≤R3
,

∂wθ2 ≤ C

R
1
2
2

1R2≤X′≤2R2
,
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and 

∂2xθ2 ≤C1R2≤X′≤2R2

(
1 +

1

R2
+

|z| 13
R1

1R1
2 ≤X′′≤R1

)

+
C|z| 23
R2

1

1X′≤2R2,R1≤X′′≤2R1,|z|≤R3
,

∂2yθ2 ≤C
(
1 +

1

R2

)
1R2≤X′≤2R2

,

∂2zθ2 ≤C1R3
2 ≤|z|≤R3

(
|x|

R1R3|z|
2
3

1R1≤X′′≤2R1 +
1

R2
3

)
+ C1R1≤X′′≤2R1

(
|x|2

R2
1|z|

4
3

+
|x|

R1|z|
5
3

)
,

∂2wθ2 ≤C
(
1 +

1

R2

)
1R2≤X′≤2R2

,

where again C > 0 is independent of R1, R2 and R3.

Now, we are ready to expand ψ1M(θ1) as

ψ1M(θ1) =
n1y

xz
[(ay − ax+ rw)∂xθ1 + (−y − xz)∂yθ1 + xy∂zθ1 + (−x− aw)∂wθ1

+ κ1∂
2
xθ1 + κ2∂

2
yθ1 + κ3∂

2
zθ1 + κ4∂

2
wθ1].

(3.3)
On R1, one has

|ψ1| = n1

∣∣∣ y
xz

∣∣∣ ≤ n1R
1
2
0

R1
· 1

|z| 23
. (3.4)

Using the estimates of derivatives on θi, we have

|ψ1x∂xθ1| ≤
n1R

1
2
0

R1R
2
3
3

∣∣∣∣∣ CR 1
2
0

+
C|z| 13
R1

∣∣∣∣∣ ≤ Cn1KR3
,

|ψ1x∂yθ1| ≤
n1R

1
2
0

R1R1R
2
3
3

∣∣∣∣∣ CR 1
2
0

∣∣∣∣∣ ≤ Cn1KR3 ,

|ψ1xz∂yθ1| = |n1y∂yθ1| ≤ Cn11R0≤X′≤2R0
,

|κ1ψ1∂
2
xθ1| ≤ Cn1

(
KR3

+
R

1
2
0

R3
1

)
,

|ψ1(κ2∂
2
yθ1 + κ3∂

2
zθ1 + κ4∂

2
wθ1)| ≤ Cn1(KR3

+ 1R0
),

where KR3 is a constant that might depend on R0, R1 and R2 such that

lim
R3→∞

KR3
= 0. (3.5)

Hence, we obtain

|ψ1M(θ1)| ≤ Cn1

(
1R0

+KR3
+
R

1
2
0

R3
1

)
. (3.6)
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Next, we estimate

|∇κθ1 · ∇κψ1|

≤ n1

(∣∣∣ y
x2z

∣∣∣ |∂xθ1|+ ∣∣∣∣ 1xz
∣∣∣∣ |∂yθ1|+ ∣∣∣ yxz2 ∣∣∣ |∂zθ1|

)
≤ Cn1

(
R

1
2
0

R2
1|z|

1
3

(
1

R
1
2
0

+
|z| 13
R1

)
+

1

R1|z|
2
3

1

R
1
2
0

+
R

1/2
0

R1|z|
5
3

(
|x|

R1|z|
2
3

+
1

R3

))

≤ Cn1

(
R

1
2
0

R3
1

+KR3

)
.

(3.7)

In the sequel, we focus on the cut-off terms involving ψ2. In this respect, we expand
ψ2M(θ2) as

ψ2M(θ2) =
n2
2κ1

(
4R2

1

z
2
3

− x2
)
[(ay − ax+ rw)∂xθ2 + (cx− y − xz)∂yθ2 + xy∂zθ2

+ (−x− aw)∂wθ2 + κ1∂
2
xθ2 + κ2∂

2
yθ2 + κ3∂

2
zθ2 + κ4∂

2
wθ2].

(3.8)
Notice that each term in (3.8) is supported on the set {X ′′ ≤ 2R1}, and therefore
the estimate (A.9) applies. Then, it entails

|ψ2x∂xθ2| ≤ Cn2
R2

1

|z| 23

∣∣∣∣∣ CR 1
2
2

+
|z| 13
R1

∣∣∣∣∣ ≤ Cn2KR3
,

|ψ2x∂yθ2| ≤ Cn2
R2

1

|z| 23

∣∣∣∣∣ CR 1
2
2

∣∣∣∣∣ ≤ Cn2KR3 ,

|ψ2xz∂yθ2| ≤ |xz||n2C
R2

1

|z| 23
1

R
1
2
2

≤ Cn2
R3

1

R
1
2
2

,

|ψ2(κ2∂
2
yθ2 + κ3∂

2
zθ2 + κ4∂

2
wθ2)| ≤ Cn1KR3

,

and
|κ1ψ2∂

2
xθ2| ≤ Cn2

(
KR3

+ 1X′≤2R2,R1≤X′′≤2R1,|z|≤R3

)
≤ cn2(KR3

+ θ1 + 1R0
).

Hence, we have

|ψ2M(θ2)| ≤ Cn2

(
R3

1

R
1
2
2

+KR3
+ θ1 + 1R0

)
, (3.9)

where KR3 is the same as that in (3.5). Recalling that R2 ≥ R1 and R0 = {x2 +
y2 + w2 ≥ R0}, we have

|∇κθ2 · ∇κψ2| ≤n2
(∣∣∣∣ xκ1

∣∣∣∣ |∂xθ2|+ ∣∣∣∣ 4R2
1

3κ1|z|
5
3

∣∣∣∣ |∂zθ2|)
≤Cn2

(
x2

R2
1R2≤X′≤2R2 +KR3

)
≤Cn2 (1R0

+KR3
) .

(3.10)
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Combining the estimates (3.6), (3.7), (3.9), (3.10), (A.4), (A.7) with (A.10), one
obtains that for R2 ≥ R0,

M(V ) ≤− a

r
x2 − y2 − aw2 + κ̄− n1θ1

(
1− C

R4
0

R1

)
− n2θ2

(
1− C

R0R
2
1

R
1
2
3

)

+ C(n1 + n2)1R0 + Cn1
R

1
2
0

R3
1

+ Cn2
R3

1

R
1
2
2

+ Cn2θ1 +KR3
(n1 + n2),

where κ̄ = 2
(
κ1

r + κ2 + κ3 + κ4
)
. Fixing n2 = 16κ̄, n1 ≥ max{8κ̄, 2Cn2} and

R0 > 1 such that in R0 = {x2 + y2 + w2 ≥ R0}, it follows that

a

r
x2 + y2 + aw2 ≥ 4κ̄+ 2C(n1 + n2).

Then, we choose R1 > 1 such that

Cn1
R

1
2
0

R3
1

≤ κ̄

3
and

R4
0

R1
≤ 1

2
,

and R2 ≥ R0 such that

Cn2
R3

1

R
1
2
2

≤ κ̄

3
.

Finally, we choose R3 such that

KR3(n1 + n2) ≤
κ̄

3
and C

R0R
2
1

R
1
2
3

≤ 3

4
.

With these parameter selections and referring back to (A.11), (A.12), we therefore
have

M(V ) ≤ −4κ̄1R0 + 2κ̄− 1

2
n11R1 −

1

4
n21R2

≤ −2κ̄+ 4κ̄(1− 1R0∪R1∪R2
)

≤ −2κ̄+ 4κ̄1K.

Since R2 ≥ R0, one has {x2 + y2 + w2 ≤ R0, |z| ≥ R3} ⊂ R1 ∪ R2. Therefore,
1 − 1R0∪R1∪R2

= 1K, where K = {x2 + y2 + w2 ≤ R0, |z| ≤ R3}. Consequently,
(A.2) follows with p = 2κ̄ and q = 4κ̄.

Finally, it remains to check the non-negativity of V . Notice that our selection of
the parameters R0, R1, R2, R3 and n1, n2 is made independent of the value κ0 (see
(A.13)). Moreover, by (3.4) and (A.9), we have

|θ1ψ1| ≤ Cn1
R

1
2
0

R1R
2
3
3

and

|θ2ψ2| ≤ Cn2
R2

1

R
2
3
3
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respectively. Thus, fixing R0, R1, R2, R3, n1, n2 and referring back to (A.13), we
have

V ≥ 1

2

[
1

r
x2 + y2 + z2 − 2

(
c+

a

r

)
z + w2 + κ0

]
− Cn1

R
1
2
0

R1R
2
3
3

− Cn2
R2

1

R
2
3
3

,

which can always be positive for every (x, y, z, w) ∈ R4 by choosing large enough
κ0. Therefore, the proof of Theorem 3.2 is now finished.

3.3. Non-existence of invariant probability measure

In this subsection, we devote ourselves to the non-existence issue. Since our results
are slightly different for b = 0 and b < 0, we state them separately.

Theorem 3.3. When b = κ1 = κ4 = 0, and one of κ2, κ3 is positive, there is no
invariant measure for system (3.1).

Proof. Assume that there is an invariant probability measure µ of (3.1) and let
(x, y, z, w) have law µ. Thus, there exists an increasing sequence of integers (Nj)

∞
j=1

with Nj+1 −Nj ≥ 2 such that

lim
j→∞

P
(∣∣2az − x2 − rw2

∣∣ ∈ [Nj , Nj + 2]
)
= 0. (3.11)

Based on the construction and properties of FN as defined by (B.1) in Appendix
B, we apply Itô’s formula to FN

(
2az − x2 − rw2

)
to get

EµFN (2azt − x2t − rw2
t )

=Eµ

∫ t

0

[
(2ax2 + 2arw2)F ′

N (2az − x2 − rw2)

+ 4a2κ3F
′′
N (2az − x2 − rw2)

]
ds+ EµFN (2az0 − x20 − rw2

0),

which further implies

Eµ(x
2 + rw2)F ′

N (2azt − x2t − rw2
t ) = −2aκ3EµF

′′
N

(
2azt − x2t − w2

t

)
.

The monotone convergence theorem further indicates

E[x2 + rw2] = lim
j→∞

E(x2 + rw2)F ′
Nj

(
2az − x2 − rw2

)
= −2aκ3 lim

j→∞
EF ′′

Nj

(
2az − x2 − rw2

)
.

(3.12)

Finally, it follows from |F ′′
N | ≤ c∗, F ′′

N = 0 on the complement of [N,N + 2] and
(3.11) that

lim
j→∞

E
∣∣F ′′

Nj

(
2az − x2 − rw2

) ∣∣ ≤ c∗P
(
(2az − x2 − rw2) ∈ [Nj , Nj + 2]

)
= 0.

(3.13)
Combining (3.12) with (3.13), one yields E[x2 + rw2] = 0. Then x,w = 0 almost
surely. Moreover, if κ3 > 0, we have z(t) = z(0) +

√
2κ3B3(t). This contradicts the

invariance. However, if κ2 > 0, we have

dx = aydt, dy = −ydt+
√
2κ2dB3.
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Using that x = 0 almost surely, we obtain

ay =
dx

dt
= 0.

Then y = 0, which contradicts to κ2 > 0. Therefore, the proof of Theorem 3.3 is
completed.

Theorem 3.4. When b < 0, for any K ⊆ R3 compact, there exists (x, y, z, w) /∈ K
such that

E(x,y,z,w)ξK = ∞,

where
ξK = inf {t ≥ 0 : (xt, yt, zt, ωt) ∈ K} .

If we further let κ1, κ4 > 0 and κ22+κ
2
3 ̸= 0, then (1.2) does not possess an invariant

probability measure.

Proof. We proceed it in four steps to construct V1 and V2 satisfying the conditions
in Lemma 2.2.
Step 1. Fix R > 1 such that H̃(x, y, z, w) > 1 for any |(x, y, z, w)| > R. Thus, we
take W2 ∈ C2

(
R4
)
via

W2(x, y, z, w) = ln H̃(x, y, z, w),

for |(x, y, z, w)| > R. Then, W2 > 0 outside of a compact set. Moreover, standard
calculations give that

LW2(x, y, z, w)

=
1

H̃(x, y, z, w)

[
|b|z2 − y2 − a

r
x2 − 2|b|(c+ a

r
)z +

κ1
r

+ κ2 + κ3 + κ4

]
− 1

H̃2(x, y, z, w)

[
κ1
x2

r2
+ κ2y

2 + κ3

(
z − c− a

r

)2
+ κ4w

2

]
.

Consequently, there exists a constant K > 0 such that

LW2(x, y, z, w) ≤ K for all (x, y, z, w) ∈ R4,

which motivates us to define V2 =W2/K.
Step 2. Denote

A =
2κ1 + 2rκ4 + 2

|b|
, m = max

{
2κ1
a
, 2a2κ3,

2rκ4
a

}
,

and let
f(ζ) := (1− cos ζ)2.

One can check that f(0) = f ′(0) = f ′′(0) = 0 and f is strictly increasing on (0, π),
convex on

(
0, 23π

)
and concave on

(
2
3π, π

)
. In particular, f ′

(
2
3π
)
> 0 = f ′′

(
2
3π
)
.

By continuity, fix B > 2
3π close to 2

3π such that f ′ ≥ −mf ′′ on
(
2
3π,B

)
. Next, we

define

Ψ(ζ) =


0 ζ < 0,

(1− cos ζ)2 = f(ζ) ζ ∈ [0, B],

c0 ln ln (ζ + c1) + c2 ζ > B,
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where constants c0, c1, c2 are determined later. Now, we claim that Ψ is a C2

function. Clearly, Ψ is a C2 function at 0, and it remains to show that
c0 ln ln (B + c1) + c2 = f(B) > 0,

c1
(B + c1) ln (B + c1)

= f ′(B) > 0,

− c (1 + ln (B + c1))

[(B + c1) ln (B + c1)]
2 = f ′′(B) < 0.

(3.14)

Substituting the second equation of (3.14) into the third one, we obtain

1 + ln (B + c1)

(B + c1) ln (B + c1)
= −f

′′(B)

f ′(B)
> 0. (3.15)

However, the function

z 7→ 1 + ln z

z ln z
is positive and decreasing on (1,∞) with a vertical asymptote at z = 1, which is
decaying at infinity. Thus, there exists a unique c1 such that B+ c1 > 1 and (3.15)
holds true. Then, for the already fixed c1, we set

c0 = f ′(B) (B + c1) ln (B + c1) > 0

and
c2 = f(B)− c0 ln ln (B + c1) .

Thus, the claim is reached. Finally, we fix λ ∈ (0, 1) such that

1 ≥ λm
(1 + ln (B + c1))

(B + c1) ln (B + c1)

and define V1 by

V1(x, y, z, w) = Ψ
(
λ
(
2az − x2 − rw2 −A

))
.

Then, V1 is a C2
(
R4
)
function and

LV1 =2
(
a|b|z + ax2 + arw2 − κ1 − rκ4

)
λΨ′

+ 4
(
κ1x

2 + a2κ3 + κ4r
2w2

)
λ2Ψ′′.

(3.16)

Step 3. We claim that
LV1 ≥ 0. (3.17)

To this goal, we let
ζ = λ

(
2az − x2 − rw2 −A

)
.

First, if ζ ≤ 0, then Ψ′ = Ψ′′ = 0 and (3.17) follows. However, if ζ ≥ 0, it follows
that

2az ≥ 2az − x2 − rw2 ≥ A =
2κ1 + 2rκ4 + 2

|b|
,

and thus a|b|z − κ1 − rκ4 ≥ 1. Hence,

a|b|z + ax2 + arw2 − κ1 − rκ4 ≥
(
ax2 + arw2 + 1

)
,(

4κ1x
2 + 4a2κ3 ++κ4r

2w2
)
≤ 2m

(
ax2 + arw2 + 1

)
.

(3.18)

Therefore, if ζ ≥ 0, the coefficients of Ψ′,Ψ′′ in (3.16) are non-negative. We split
the domain ζ ≥ 0 into three pieces, and finally conclude (3.17).
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(1) If ζ ∈
[
0, 23π

]
, Ψ′(ζ),Ψ′′(ζ) ≥ 0, and the non-negativity of coefficients of Ψ′,Ψ′′

in (3.16) implies (3.17).

(2) If ζ ∈
(
2
3π,B

)
, then Ψ′(ζ) > 0 and Ψ′′(ζ) < 0. Thus, from (3.16) and (3.18), it

follows

1

λ
LV1

≥
(
2a|b|z + 2ax2 + 2arw2 − 2κ1 − 2rκ4

)
Ψ′ + λ

(
4κ1x

2 + 4a2κ3 + κ4r
2w2

)
Ψ′′

≥ 2
(
ax2 + arw2+1

)
Ψ′+2λm

(
ax2+arw2+1

)
Ψ′′

≥ 0.

(3) If ζ ∈ [B,∞), then Ψ(ζ) = c0 ln ln (ζ + c1) + c2. Since c0 > 0, one has Ψ′(ζ) >
0,Ψ′′(ζ) < 0. Then,

LV1
λ

≥ 2
(
ax2 + arw2 + 1

)
Ψ′ + 2λm

(
ax2 + arw2 + 1

)
Ψ′′

≥
2c0
(
ax2 + arw2 + 1

)
(2ζ + c1) ln (ζ + c1)

(
1− λm

(1 + ln (ζ + c1))

(ζ + c1) ln (ζ + c1)

)
≥

2c0
(
ax2 + arw2 + 1

)
(2ζ + c1) ln (ζ + c1)

(
1− λm

(1 + ln (B + c1))

(B + c1) ln (B + c1)

)
≥ 0.

Step 4. Let us verify that the assumptions of Lemma 2.2 are satisfied with V1 and
V2. Clearly, (iv) follows from the construction of V1 and V2 , and it is definite that
(ii) is due to the fact that lim|(x,y,z,w)|→∞H(x, y, z, w) = ∞. As for (i),

lim sup
|(x,y,z,w)|→∞

V1(x, y, z, w) ≥ lim
z→∞

V1(0, 0, z, 0)

= lim
z→∞

Ψ(λ(2az −A))

= lim
z→∞

c0 ln ln (λ(2az −A) + c1) + c2

= ∞,

while for (iii),

lim
R→∞

sup
sup|x,y,z,w|=R V1(x, y, z, w)

inf |x,y,z,w|=R V2(x, y, z, w)
≤ lim sup

R→∞

V1(0, 0, R, 0)

ln
[
1
2 (R− c− a

r )
2
]

≤ lim
R→∞

c0 ln ln (λ(2σR−A) + c1) + c2

ln
[
1
2 (R− c− a

r )
2
]

= 0,

we come to the fact that z 7→ V1(x, y, z, w) is increasing for large z, and (x, y, w) 7→
V1(x, y, z, w) is non-increasing. This finishes the proof based on Lemma 2.2.
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Appendix

A. Derivation of the Lyapunov function

It is notoriously difficult to check that according to (2.2), the infinitesimal generator
of (3.1) leads to

M =(a(y − x) + rw)∂x + (−y − xz)∂y + xy∂z + (−x− aw)∂w

+ κ1∂
2
x + κ2∂

2
y + κ3∂

2
z + κ4∂

2
w,

(A.1)

by which our immediate goal is to acquire the inequality

M ≤ −p+ q1K (A.2)

for some constants p, q > 0 and some compact set K ⊆ R4.
First, we choose the following Lyapunov function

H̃(x, y, z, w) =
1

2

[
1

r
x2 + y2 + z2 − 2

(
c+

a

r

)
z + w2 + κ0

]
, (A.3)

where κ0 > 0 is large enough, so that H̃ ≥ 0. Since

M(H̃) = −a
r
x2 − y2 − aw2 + 2

(κ1
r

+ κ2 + κ3 + κ4

)
, (A.4)

the required inequality (A.2) is sure on the set where |(x, y, w)| :=
√
x2 + y2 + w2

is large. More specifically, let the region

R0 = {x2 + y2 + w2 ≥ R0}

be with a sufficiently large R0 ≥ 0. That is,

R0 ≥ 2κ̄

min{ c
r , 1, a}

=
2
(
κ1

r + κ2 + κ3 + κ4
)

min{ c
r , 1, a}

,

Therefore, we have
M(H̃) ≤ −κ̄ in R0.

Next, we pay attention to the situation that x2 + y2 +w2 ≤ R0, and |z| is large.
For this purpose, we consider the scaling transformation

Tλ(x, y, z, w) = (λ−αx, y, λz, λ−αw),

where λ≫ 1 and α ∈ (0, 1). Applying Tλ to the generator, M yields

Tλ ◦M = (ayλα − ax+ rw)∂x + (cλ−αx− y − λ1−αxz)∂y + λ−1−αxy∂z

+ (−x− aw)∂w + κ1λ
2α∂2x + κ2∂

2
y + κ3λ

−2∂2z + κ4λ
2α∂2w

∼ κ1λ
2α∂2x − λ1−αxz∂y + κ4λ

2α∂2w.

(A.5)

Obviously, the dynamics of (A.5) is twofold. First, if α ∈ (0, 13 ), the dominant term
in (A.5) is −λ1−αxz∂y, which allows us to consider the dominant equation

Ẋ = 0, Ẏ = −XZ, Ż = 0, Ẇ = 0.
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Indeed, it suggests that we should seek a function ψ1 such that

−xz∂yψ1 = −n1,

where the constant n1 > 2κ̄. Thus,

ψ1 = n1
y

xz
. (A.6)

Now, we pause to define a region

R1 := {x2 + y2 + w2 ≤ R0, |x||z|1/3 ≥ R1, |z| ≥ R3},

where R0, R1, R3 ≥ 1 are large constants to be determined below. Note that, on
R1, the following estimates∣∣∣∣ y2x2z

∣∣∣∣ ≤ ∣∣∣∣ y2

x2z
2
3

∣∣∣∣ ∣∣∣∣ 1z 1
3

∣∣∣∣ ≤ R0

R2
1R

1
3
3

≤ R0

R2
1

,

∣∣∣ y
x3z

∣∣∣ ≤ R
1
2
0

R3
1

,

∣∣∣ y
xz

∣∣∣ ≤ R
1
2
0

R1

1

|z| 23
,∣∣∣∣y2z2

∣∣∣∣ ≤ ∣∣∣∣x6y2x6z2

∣∣∣∣ ≤ R4
0

R6
1

≤ R4
0

R1

are satisfied. Therefore, it is obvious that

1

n1
M(ψ1) = (ay − ax+ rw)

(
−y
x2z

)
+ (cx− y − xz)

1

xz

+ xy

(
−y
xz2

)
+

2κ1y

x3z
+

2κ3y

xz3

≤ CR4
0

R1
− 1,

(A.7)

where C = C(a, c, r, κ1, κ3) is independent of R0, R1, R2 and n1. Thus, for suffi-
ciently large R1 depending on R0, we obtain

M(ψ1) ≤ −1

2
n1 on the region R1.

Consequently, for any fixed R0 ≥ 1, we can choose suitably large n1 ≥ 1 ∨ 4κ̄ and
R1 ≥ 1, deriving

M(H̃ + ψ1) ≤ −1

2
n1 on the region R1.

The second situation is that α ∈ ( 13 , 1), where the dominant term in (A.5) becomes
κ1λ

2α∂2x + κ4λ
2α∂2w. This allows us to consider

dX =
√
2κ1dB1, Ẏ = 0, Ż = 0, dW =

√
2κ4dB4.

To reach our goal, we define the region

R2 := {x2 + y2 + w2 ≤ R2, |x||z|
1
3 ≤ R1, |z| ≥ R3}.
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Similarly, our focus lies in identifying a function ψ2 that solves

(κ1∂
2
x + κ4∂

2
w)ψ2 = −n2.

Clearly, a particular solution to the above equation is

ψ2 =
n2
2κ1

(
4R2

1

z
2
3

− x2
)
, (A.8)

implying the estimate

|ψ2| ≤ C
n2R

2
1

|z| 23
, whenever |x||z| 13 ≤ 2R1. (A.9)

Thus, we obtain

1

n2
M(ψ2) = (ay − ax+ rw)

(
−x
κ1

)
+ xy

(
−4R2

1

3κ1|z|
5
3

)
− 1 +

20κ3R
2
1

9κ1|z|
8
3

≤ CR2
1R0

R
1
3
3

− 1,

(A.10)

since

|(y − x)x| ≤ 2R1R
1
2
2

|z| 13
≤ 2R1R

1
2
2

R
1
3
3

,

|wx| ≤ R1|w|
|z| 13

≤ R1R
1
2
2

R
1
3
3

,

where C = C(a, c, r, κ1, κ3) is independent of R1, R2, R3 and n2. Hence, we get

M(H̃ + ψ2) ≤ −1

2
n2 on the region R2

by choosing large R3 ≥ 1 and n2 ≥ 1 ∨ 4κ̄. For the critical situation α = 1
3 , the

dominant dynamics is
λ

2
3 ∂2x − λ

2
3xz∂y + λ

2
3 ∂2w.

Whereas, ψ2 is also valid because it is independent of y.
Besides, it is easy to check that

lim sup
|X|→∞

ψi(X)

H̃(X)
= 0

for i = 1, 2, so that the inequality (A.2) is sure, where

K := {x2 + y2 + w2 ≤ R0, |z| ≤ R3}.

Based on the above discussion, we arrive at a preliminary candidate

V := H̃ + 1R1
ψ1 + 1R2

ψ2,

where 1 stands for the indicator function. Therefore, all that remains is to smooth
this Lyapunov function. For this purpose, we introduce

χ(x) =

{
1 if |x| ≤ 1 ,

0 if |x| ≥ 2 ,
and χ̃(x) =

{
1 if |x| ≥ 1 ,

0 if |x| ≤ 1/2 ,
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by which, we define

θ1 := χ

(
x2 + y2 + w2

R0

)
χ̃

(
|x||z| 13
R1

)
χ̃

(
|z|
R3

)
, (A.11)

θ2 := χ

(
x2 + y2 + w2

R2

)
χ

(
|x||z| 13
R1

)
χ̃

(
|z|
R3

)
. (A.12)

Therefore, we obtain

V :=H̃ + θ1ψ1 + θ2ψ2

=
1

2

[
1

r
x2 + y2 + z2 − 2

(
c+

a

r

)
z + w2 + κ0

]
+
n1yθ1(x, y, z, w)

xz

+
n2θ2(x, y, z, w)

2κ1

(
R2

1

|z| 23
− x2

) (A.13)

with specific parameters R0, R1, R2, R3 ≥ 1 and κ0, n1, n2 > 0.

B. Construction of cut-off function FN

For each N ≥ 1, we define a C2 function FN : R → R as

FN (x) =


x x ∈ [0, N),

h(x−N) +N x ∈ [N,N + 2),

N + 1 x ≥ N + 2,

(B.1)

where h : [0, 2] → R is a non-decreasing C2 function such that

h(0) = h′′(0) = h′(2) = h′′(2) = 0, h′(0) = 1, h(2) = 1,max
[0,2]

|h′| ≤ 1.

Denote c∗ = max[0,2] |h′′|. Clearly,

F ′
N ≥ 0, max

[0,2]
|F ′

N | ≤ 1, and max
[0,2]

|F ′′
N | = c∗.

Next, we claim F ′
Nj+1

≥ F ′
Nj

for any j. In fact, for |ξ| ≤ Nj one has

1 = F ′
Nj

(ξ) = F ′
Nj+1

(ξ),

and for |ξ| ≥ Nj+2 one has

F ′
Nj

(ξ) = 0 ≤ F ′
Nj+1

(ξ).

Finally, since Nj+1 ≥ Nj + 2, for any |ξ| ∈ [Nj , Nj + 2], we have

F ′
Nj

(ξ) ≤ 1 = F ′
Nj+1

(ξ).

Thus, (F ′
Nj

) is a non-decreasing sequence of non-negative functions that converge
pointwise to 1 on R. In order to facilitate the readers, we carry out the following
simulation. To this aim, we take

h(x) :=
1

16
x4 − 1

4
x3 + x,

for any x ∈ [0, 2]. Obviously, the required conditions for h(x) are satisfied, and the
phase diagram is shown in Figure 1.
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Figure 1. Phase diagram of FN and its derivatives

Acknowledgements

The authors appreciate the reviewers and editors for their valuable suggestions that
have helped improve this paper.

References

[1] A. Athreya, T. N. Kolba and J. C. Mattingly, Propagating Lyapunov functions
to prove noise–induced stabilization, Electronic Journal of Probability, 2011,
17(96), 1–38.

[2] J. Birrell, D. P. Herzog and J. Wehr, The transition from ergodic to explosive
behavior in a family of stochastic differential equations, Stochastic Processes
and their Applications, 2012, 122(4), 1519–1539.
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