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On an Infection-age Structured Epidemic Model
with Multiscale∗

Yongle Fu1, Yunfei Lv1,† and Yongzhen Pei1

Abstract Considering the individual difference, this paper deals with an
infection-age structured epidemic model coupling within-host and between-
host for environmentally-driven infectious disease. The full system with two
time scales, the cellular level and population level, is first separated into the
isolated fast and slow systems. For the isolated fast and slow systems, com-
bined with the within-host and between-host reproduction numbers, Rw0 and
Rb0, we give the complete global dynamics by using Lyapunov function re-
spectively. Our results indicate that when there is no virus in environment
the disease can be not only controlled, but also eliminated. However, when
there is always virus in environment the disease is only controlled but not e-
liminated. Furthermore, the coupled slow system has complex dynamics with
multiple positive equilibria and backward bifurcation. The virus contaminated
environment plays a critical role on backward bifurcation. When the initial
environmental virus is below some threshold the disease will be eliminated,
when it is above the threshold the disease will develop an endemic disease.
Some numerical simulations are performed to illustrate these results. The age
structured model is more general, and this work includes some previous results.

Keywords Age structure, Coupled system, Basic reproduction number, Sta-
bility, Backward bifurcation.
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1. Introduction

There are many viral infectious diseases among human beings. The common viral
infectious diseases include 2019-nCoV, influenza, AIDS, rubella, respiratory virus
infection, viral hepatitis, etc. These diseases not only cause huge social and eco-
nomic losses, but also cause great harm to human health. Based on the dynamical
mechanisms of the disease transmission, mathematical model can be established
to study the properties of the model solution, That is, the threshold conditions
which have been widely used to control and predict the current and future epidemic
prevalence.

Infection age, which is the time passed since a host was infected, measures the
amount of viruses accumulated in an infected host. Some works on HIV/AIDS
and 2019-nCoV, have found that different infection age leads to significant differ-
ences in infection rates and mortality caused by diseases. Age structured infection
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model can be used to describe the individual difference. For instance, the exposed
individuals and infected individual have different transmission rates. Recently, in-
fection age has been introduced into epidemic models to study this phenomenon,
for example [1, 4, 12, 16, 24, 25]. Nevertheless, the introduction of the infection age
brings about changes to the model from ordinary differential equation to first-order
partial differential equation (the well-known age structured model), increasing the
difficulty of the study.

However, infectious disease dynamics are dominated by many interconnected
scales, from complex within-host infection processes to between hosts and environ-
ments. Therefore, the other individual difference we take account in this context is
that the disease driven by environment has two time scales: the cellular level and the
population level. At the cellular level, the virus infection process within the hosts is
called the fast system, which usually takes the form of cell-virus interactions, while
at the population level, disease transmission between hosts is a slow process, which
refers to the transmission of disease among individuals. Therefore, both questions
will be raised, and how does the coupling of virus and individual affect the process
of disease transmission? What is the impact of infection-age structure on disease
dynamics?

The dynamic behavior of the within- and between-host is often considered sepa-
rately, but it is found that the establishment of the coupled model will have new in-
sights. For Toxoplasma gondii, authors in [3,21] proposed a coupled cell virus model
and SI epidemic model, where the virus in polluted environment plays a major and
determinant role in transmission of Toxoplasma infectious disease. Backward bifur-
cation may occur in [3, 21] when the basic reproduction number is less than 1, in
which stable disease-free equilibrium and endemic equilibrium can coexist. In such
case, the disease can persist and be hard to control. This means the basic repro-
duction number will not be sufficient to described whether the disease is endemic or
not, and the initial values should be paid attention to. Based on the coupling mod-
els of [3, 21], authors in [7] considered the disease-induced mortality, obtained the
similar dynamic behavior and studied the evolution of virulence. The other work-
s described virus replication and their respective immune responses while disease
transmission is represented by the SI model [2], the dynamics of cholera within
and between hosts [25] as well as the effects of within-host and population-level
dynamics on malaria transmission dynamics [1]. Furthermore, infectious disease
models with time-varying parameters and general nonlinear incidence rates have
been analyzed in [12]. Authors in [13, 26] considered the impacts of Wolbachia on
the mosquito-borne diseases in a heterogeneous environment.

The assumptions in the above articles are made on the basis of homogeneity
without considering individual differences. That is, the infection age is not taken
into account, especially for the coupled within- and between-host model. Authors
in [20] derived a stage-structured epidemic model from an age structured model,
while did not discuss the age structured model. Recently, the model of [7] has
been extended in [14], where the mortality was considered as the function of the
infection age. However, it did not consider the infection age of cells in the host.
As stated in the pieces of literature [5,6,10,11,17–19,27], the infection age of viral
diseases is of great important. Therefore, we will introduce the infection age into the
coupled within- and between-host models, which is more in line with the biological
background, and increases the difficulty in mathematical research.

In this paper, our approach of establishing model is based on the idea of sep-
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arating biological time scales, a fast time scale associated with the within-host
dynamics and a slow time scale associated with the epidemiological process and the
environment. The article is arranged as follows: In Section 2, we propose the model
framework by using a hybrid system of ordinary differential equations and partial
differential equations. The separate method in [8] is extended to the age structured
model in terms of the singular perturbation theory. In Section 3, we obtain the
main results by defining the basic reproduction numbers, establishing the positivity
and boundedness of solutions, global dynamics, multiple positive equilibria, back-
ward bifurcation, numerical simulations and biological meanings. In Section 4, a
discussion is carried out to show that the age structured model is more general.
Finally, the main proofs of theorems are given in Appendix.

2. Model formulation

This paper considers a general coupled within- and between-host epidemic model
with infection-age structure. This model can be used to describe the environmentally-
driven infectious diseases such as Toxoplasmosis. As an obligate intracellular proto-
zoon, Toxoplasma gondii can cause the zoonotic toxoplasmosis. Humans are able to
be infected via accidental ingestion of water or food contaminated with the oocysts
of Toxoplasma gondii. Toxoplasmosis can result in severe clinical symptoms and
even death to immunocompromised individuals such as infants and pregnant wom-
en. So far, we cannot prevent and control cat toxoplasmosis due to the lack of
information on the formation of oocysts. In this paper, we try to investigate the
mechanism of within- and between-host transmission of the environmentally-driven
infectious diseases.

In order to consider the individual difference, we introduce age structure in the
following coupled model

Ṫ (t) = Λc − kV (t)T (t)−mT (t),

∂T∗(t,a)
∂t + ∂T∗(t,a)

∂a = −(m+ δ(a))T ∗(t, a),

V̇ (t) = g(E) +
∫ +∞

0
δ(a)p(a)T ∗(t, a)da− cV (t),

T ∗(t, 0) = kV (t)T (t),

Ṡ(t) = Λh − βE(t)S(t)− µS(t),

∂I(t,a)
∂t + ∂I(t,a)

∂a = −(µ+ ϕ(a))I(t, a),

Ė(t) = (1− E(t))
∫ +∞

0
V (t)θ(a)I(t, a)da− γE(t),

I(t, 0) = βE(t)S(t),

(2.1)

where T (t), T ∗(t, a) and V (t) are the densities of healthy cells, infected cells with
infection age a and the virus load at time t; S(t) denotes the numbers of susceptible
individuals; I(t, a) represents the density of infectious individuals with infection
age a at time t; E(t) represents the level of environment contaminated by the virus
at time t, or the concentration of virus per unit area or volume of a region being
considered (0 ≤ E ≤ 1). The framework of the environmentally-driven infectious
disease model (see Figure 1).

Within a host, the healthy cells are infected by the virus with the law kV (t)T (t),
which will flow into the infected cells. Thus, the new infected cells are given
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by T ∗(t, 0) = kV (t)T (t) (boundary condition). The recruitment of viruses with-
in a host has two ways. One is when the cells die, the viruses are released and
infect other cells. In this process, a mass of viruses are released with the level∫ +∞

0
δ(a)p(a)T ∗(t, a)da, where δ(a) and p(a) are per-capita infection-induced mor-

tality rate of cells and virus production rate with infection age a respectively. The
other is the input of the virus contaminated environment given by g(E). This de-
notes an added rate in the change of virus load due to the continuous ingestion of
virus by the host from contaminated environment. In this work, we assume that
environmental contamination is measured by the concentration of virus living in the
environment, and that hosts acquire infection by ingesting contaminated food. The
function g expresses that the environmental contamination is an increasing function
of the number of viruses in the host. These biological considerations suggest that
the function g should have the following properties.

(H1) g(0) = 0, g(E) ≥ 0, g′(E) > 0, g′′(E) ≤ 0.

One of the simplest forms for g(E) considered in [3,8] is the linear function g(E) =
wE, where w is a positive constant.

E(t)

Between− host

S(t)

Λh

µS

V (t)

γE

Λc T (t) kV T

mT

T ∗(t, a)

mT ∗

ϕ(a)IµI

I(t, a)

Within− host
cV

δ(a)T ∗

(1 − E)
∫ +∞

0 V θ(a)I(t, a)daβES

g(E)

∫ +∞

0 δ(a)p(a)T ∗(t, a)da

Figure 1. This framework can be used to model the environmentally-driven infectious diseases. Our
multiscale model involves two scales: between-host (top) and within-host (bottom) by focusing on the
transmission between susceptible and infected hosts in contaminated environment and the virus-cell
interactions within an infected host.

Between hosts, the susceptible individuals are infected via ingesting the con-
taminated water or food described by βE(t)S(t). Similarly, the new infected hosts
are given as I(t, 0) = βE(t)S(t) (boundary condition). After a host becomes an
infected individual, it releases viruses which can contaminate the environment. Let
θ(a) be the virus releasing rate per host with infection age a, which is proportional
to the number of infected hosts and the within-host virus concentrations. Thus, the
rate of environmental contamination is

∫ +∞
0

V (t)θ(a)I(t, a)da.
We give three important assumptions as follows.

(H2) The functions p(a), δ(a), θ(a), ϕ(a) ∈ L+
1 (0,+∞) are bounded;

(H3) The parameters Λc, k, m, Λh, β, µ and γ are all nonnegative constants, and
their definitions are listed in Table 1;
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Table 1 Description of parameters and frequently used symbols.

Symbol Description

Λc Recruitment of cells

k Per-capita infection rate of cells

m Per-capita natural mortality of cells

δ(a) Per-capita infection-induced mortality rate of cells with infection age a

p(a) Per-capita virus production rate with infection age a

c Per-capita clearance rate of virus in the host

g(E) The rate of additional increase in virus concentration in the host

Λh Recruitment of susceptibles

β Per-capita infection rate of hosts in the contaminated environment

µ Per-capita natural death rate of hosts

ϕ(a) Per-capita disease-induced death rate of hosts with infection age a

θ(a) Per-capita virus releasing rate with infection age a

γ Per-capita clearance rate of virus in the environment

(H4) The initial conditions: T (0) > 0, V (0) > 0 and T ∗(0, a) = η(a) ∈ L+
1 (0,+∞);

S(0) > 0, E(0) > 0 and I(0, a) = ξ(a) ∈ L+
1 (0,+∞).

By applying the method of characteristics, the solutions T ∗(t, a) and I(t, a) are
given by

T ∗(t, a) =

kV (t− a)T (t− a)e−
∫ a
0

(m+δ(r))dr, t > a,

η(a− t)e−
∫ t
0

(m+δ(r+a−t))dr, t ≤ a,
(2.2)

and

I(t, a) =

βE(t− a)S(t− a)e−
∫ a
0

(µ+ϕ(r))dr, t > a,

ξ(a− t)e−
∫ t
0

(µ+ϕ(r+a−t))dr, t ≤ a.
(2.3)

Base on the above assumptions, in view of [15, Theorem 3.1], the existence and
uniqueness of the solutions can be obtained by rewriting the differential equations
(2.1) with boundary and initial conditions to the integral equations.

2.1. Separation of the fast and slow systems

Since the within-host dynamics and the between-host dynamics have different time
sales, we next separate the two time scales by applying the perturbation theory.
For this, we introduce the slow time variables s = εt and τ = εa, where 0 < ε� 1.
Along almost every characteristic line, it follows that da

dt = 1. Thus, dτ
ds = 1. Note
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that the time scale of between hosts dynamics is slower than that of within hosts
dynamics, and the parameters related to population level dynamics are smaller. We
introduce new variables

Λ̃h =
1

ε
Λh, β̃ =

1

ε
β, µ̃ =

1

ε
µ, γ̃ =

1

ε
γ, ϕ̃(a) =

1

ε
ϕ(a), θ̃(a) =

1

ε
θ(a).

Denote ‘·’= d
ds and ‘′’= d

dt . Then, the full system can be written as

T ′(t) = Λc − kV (t)T (t)−mT (t),

∂T∗(t,a)
∂t + ∂T∗(t,a)

∂a = −(m+ δ(a))T ∗(t, a),

V ′(t) = g(E(t)) +
∫ +∞

0
δ(a)p(a)T ∗(t, a)da− cV (t),

S′(t) = ε(Λ̃h − β̃E(t)S(t)− µ̃S(t)),

∂I(t,a)
∂t + ∂I(t,a)

∂a = −ε (µ̃+ ϕ̃(a)) I(t, a),

E′(t) = ε
((

1− E(t)
)
V (t)

∫ +∞
0

θ̃(a)I(t, a)da− γ̃E(t)
)
.

(2.4)

Let

T1(s) = T (t), T ∗1 (s, τ) = T ∗(t, a), V1(s) = V (t),

S1(s) = S(t), I1(s, τ) = I(t, a), E1(s) = E(t).

Therefore, with respect to the slower time s, we have

εṪ1(s) = Λc − kV1(s)T1(s)−mT1(s),

ε
(
∂T∗1 (s,τ)

∂s +
∂T∗1 (s,τ)

∂τ

)
= −(m+ δ1(τ))T ∗1 (s, τ),

εV̇1(s) = g(E1) +
∫ +∞

0
δ1(τ)p1(τ)T ∗1 (s, τ)dτ − cV1(s),

Ṡ1(s) = Λ̃h − β̃E1(s)S1(s)− µ̃S1(s),

∂I1(s,τ)
∂s + ∂I1(s,τ)

∂τ = −(µ̃+ ϕ1(τ))I1(s, τ),

Ė1(s) =
(
1− E1(s)

) ∫ +∞
0

V1(s)θ1(τ)I1(s, τ)dτ − γ̃E1(s),

(2.5)

where δ1(τ) = δ(a), p1(τ) = p(a) and ϕ1(τ) = ϕ̃(a), θ1(τ) = θ̃(a).
Next, we analyze the whole system by analyzing the fast and slow dynamics of

the system respectively. The fast dynamics can be analyzed by the system (2.4),
when ε = 0 

T ′(t) = Λc − kV (t)T (t)−mT (t),

∂T∗(t,a)
∂t + ∂T∗(t,a)

∂a = −(m+ δ(a))T ∗(t, a),

V ′(t) = g(E) +
∫ +∞

0
δ(a)p(a)T ∗(t, a)da− cV (t),

(2.6)

in which E is considered as a constant parameter. The slow dynamics can be
analyzed by the system (2.5) when ε = 0. For unify notation, we still use the
original notations and obtain

S′(t) = Λh − βE(t)S(t)− µS(t),

∂I(t,a)
∂t + ∂I(t,a)

∂a = −(µ+ ϕ(a))I(t, a),

E′(t) =
(
1− E(t)

) ∫ +∞
0

V θ(a)I(t, a)da− γE(t),

(2.7)
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where the fast variable V will be replaced by its value at a steady state of the fast
system (2.6).

3. Main results

In this section, we will discuss the isolated fast system, isolated slow system and
the coupled slow system respectively. Combined with the reproduction numbers, we
obtain the main results including the positivity and boundedness of solutions, global
dynamics, multiple positive equilibria, backward bifurcation, numerical simulations
and biological meanings. The corresponding proofs are given in Appendix.

3.1. Analysis of isolated fast system

Compared to the dynamics at the population level, the within-host dynamics is fast.
In such case, the between-host (slow) variables can be viewed as constants. The
linking variable E(t) in the within-host (fast) system is a constant and 0 ≤ E ≤ 1,
where E = 0 means there is no virus in the environment, E > 0 represents there are
viruses in the environment and E = 1 indicates that the virus in the environment
reaches its maximum. Thus, the fast time system (2.6) is an isolated within-host
virus infection system.

First, with regard to the positivity and boundedness of the solutions for system
(2.6), we have the following results.

Theorem 3.1. The solutions (T (t), T ∗(a), V (t)) of (2.6) remain positive and ulti-
mately bounded for nonnegative initial dates and boundary conditions.

As we know, the basic reproduction number plays an important role on the
study of epidemiology and within-host pathogen dynamics. There is an infection-
free equilibrium U0 = (T0, 0, 0) with T0 = Λc

m , if E = 0. Based on the method
of [9], we define the within-host reproduction number by

Rw0 =
1

c
·
∫ +∞

0

δ(a)p(a)σ(a)kT0da,

where σ(a) = e−
∫ a
0
m+δ(r)dr is the probability that an infected cell can survive to

infection age a. Note that T0 is the number of healthy cells at the beginning of
the infection, k is the infection rate of cells. Then, σ(a)kT0 is the average number
of secondary cases by one virus which can survive to infection age a. Besides,
1
c

∫ +∞
0

δ(a)p(a)da represents the amount of viruses released by one virus during its

survival period, where 1
c is the survival time of the virus. Therefore, Rw0 represents

the average number of virus released by all secondary infected cells by one virus
during the survival period of the virus at the early stage of infection.

With help of the basic reproduction number, we now discuss the existence and
stability of equilibria in (2.6). For the global stability of equilibria, we will take the
Lyapunov function technique combined with the LaSalle invariance principle. Since
the phase space is the infinite dimensional Banach space, according to Theorem
4.2 in [22, Chapter IV], the relative compactness of the orbit should be given first.
Applying the method of Theorem 3.1 in [23] for the isolated system, we can obtain
the relative compactness of the orbit and omit the proof. Based on this, we next
construct suitable Lyapunov functions and prove the global stability.
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For the case of E = 0, the system (2.6) has infection-free equilibrium U0 =

(T0, 0, 0) and infectious equilibrium U1 = (T , T
∗
(a), V ), if Rw0 > 1, where

T = T0

Rw0
, T

∗
(a) = σ(a)Λc

(
1− 1

Rw0

)
, V = m(Rw0−1)

k . (3.1)

Theorem 3.2. Assume E = 0 in the system (2.6). The infection-free equilibrium
U0 is globally asymptotically stable (GAS), if Rw0 < 1, and whereas the infectious
equilibrium U1 is GAS, if Rw0 > 1.

Remark 3.1. Theorem 3.2 indicates that when there is no virus in the environment,
i.e., E = 0, the cell infection depends on the basic reproduction number Rw0.
When Rw0 < 1, the virus and the infected cells will eventually be cleared. When
Rw0 > 1, the virus will eventually stabilize at a positive balance V . Meanwhile,
the healthy and infected cells eventually stabilize at the positive equilibrium levels
T and T

∗
(a). The case of E = 0 can be viewed as that infected hosts are kept in

quarantine or treatment. In order to clear the virus in the host, we can decrease
the basic reproductive number Rw0, so that Rw0 < 1 by enhancing the immunity
and undergoing some sort of therapy ( increasingc), or decreasing the infection rate
of cells (k), or decreasing the amount of viruses released by an infected cell during

its survival period (N =
∫ +∞

0
δ(a)p(a)σ(a)da). These can be shown in Figure 2 in

the case of E = 0.

For the case of E > 0, if the system (2.6) has an equilibrium U2 = (T̃ (E), T̃ ∗E(a),

Ṽ (E)), then it satisfies

Λc − kṼ (E)T̃ (E)−mT̃ (E) = 0,

∂T̃∗E(a)
∂a = −(m+ δ(a))T̃ ∗E(a),

g(E) +
∫ +∞

0
δ(a)p(a)T̃ ∗E(a)da− cṼ (E) = 0,

T̃ ∗E(0) = kṼ (E)T̃ (E).

(3.2)

Simplifying the above formula yields the equation

T̃ 2(E)− a1T̃ (E) + a2 = 0, where a1 = g(E)
mN + T0

(
1 + 1

Rw0

)
, a2 =

T 2
0

Rw0
.

The discriminant of the above equation satisfies

∆ = a2
1 − 4a2 > 0.

Putting the forth equation into the first formula of (3.2), we obtain T̃ ∗E(0) = m(T0−
T̃ (E)) > 0 if T̃ (E) < T0. It follows that the larger root does not satisfy the positivity

of T̃ ∗E(0), and U2 is a unique infectious equilibrium of the system (2.6), where

T̃ (E) = 1
2

(
a1 −

√
a2

1 − 4a2

)
, T̃ ∗E(a) = mσ(a)(T0 − T̃ (E)),

Ṽ (E) = 1
c

(
g(E) +m(T0 − T̃ (E))N

)
.

(3.3)

We have the following results.
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Theorem 3.3. For E > 0 is a constant. The unique infectious equilibrium U2 =
(T̃ (E), T̃ ∗E(a), Ṽ (E)) is GAS. Furthermore,

lim
E→0

U2 =

U0 = (T0, 0, 0), for Rw0 ≤ 1,

U1 = (T , T
∗
(a), V ), for Rw0 > 1.

Remark 3.2. The case of E > 0 shows that the infected hosts are exposed. In
such case, the virus in the host cannot be extinct unless there is no viral environ-
ment. Meanwhile, healthy cell, infected cell and the virus eventually stabilize at
the infectious equilibrium U2 = (T̃ (E), T̃ ∗E(a), Ṽ (E)), which are related to the lev-
el of environment contaminated E. Furthermore, the viral equilibrium level is an
increases function of E, i.e.,

d

dE
Ṽ (E) =

1

c

d

dE
g(E)

(
1 +

T̃ (E)√
a2

1 − 4a2

)
> 0.

Moreover, the viral equilibrium level is a decreasing function of the clearance rate
of virus c, an increasing function of the infection rate of cells k and the amount of
virus released by a within-host infected cell during its survival period N respectively.
This is can be shown in Figure 2.

Remark 3.3. Theorems 3.2 and 3.3 show that as the virus in the environment is
gradually cleared. That is, E → 0, the virus in the host will be gradually removed,
when Rw0 < 1; even if the virus in the environment is gradually removed, the virus
in the host will eventually still stabilize at a positive balance V , when Rw0 > 1.

As time goes on, the virus in the host will be excreted and contaminate the
environment after a period of time, and conversely increases the amount of viruses
in the environment. When the amount of viruses in the environment reaches a
certain level, more healthy hosts will be infected, so that the virus begins to spread
among the hosts. Then, the disease will be prevail among hosts and the epidemic
regular pattern expressed by the age structured SIE model (2.7).

3.2. Analysis of isolated slow system

We assume V is a constant in the slow system (2.7), which becomes into an isolated
between-host system.

Note that the fast system (2.6) is similar to the slow system (2.7), some results
of (2.7) are the same as that of (2.6), and we omit their proof. First, we give the
positivity and boundedness of the solutions.

Theorem 3.4. For the slow system (2.7), the solutions remain positive and ulti-
mately bounded for nonnegative initial dates and boundary conditions.

We define the between-host reproduction number as

Rb0 =
1

γ
βS0V

∫ +∞

0

θ(a)π(a)da,

where π(a) = e−
∫ a
0

(µ+ϕ(r))dr is the probability that an infected individual can
survive to infection age a. From our assumptions, we know that S0 = Λh

µ is the
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number of healthy individuals at the beginning of the epidemic; β represents the
infection rate of hosts; 1

γ is the survival time of the virus; V
∫ +∞

0
θ(a)π(a)da is the

amount of an infected individual discharging virus into the environment. Therefore,
Rb0 indicates the number of secondary infected cases in which an infected individual
can infect susceptible in their survival time at the early stage of infection.
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Figure 2. The monotonicity of the virus equilibria level Ṽ (E) as functions of the clearance rate of
virus c in (a), the infection rate of cells k in (b) and the amount of virus released by an infected cell
during its survival period N in (c) respectively. It is easy to verify that c = c∗, k = k∗ and N = N∗

are equivalent to Rw0 = 1 in (a), (b) and (c). The blue region is the stable region of U2 for the case
of E ∈ (0, 1]. When E = 0, the left red solid line, i.e., c < c∗ (corresponding Rw0 > 1), is the stable
region of U1 and the right solid line, i.e., c > c∗ (corresponding Rw0 < 1), is the stable region of U0 in
(a). The illustrations of the red solid line in (b) and (c) are similar to (a). For each figure, all other

parameters are fixed, given by (a): m = 1.5 × 10−2, Λc = 8.5 × 103, k = 1.5 × 10−4, w = 4 × 103,

N = 0.1368; (b): m = 1.5 × 10−2, Λc = 5 × 103, c = 10, w = 3 × 103, N = 4; (c): m = 1.5 × 10−2,

Λc = 8.5× 103, c = 10, w = 4× 103, k = 1.5× 10−4.

Let (S, I(a), E) denote an equilibrium of (2.7), which satisfies the following
equations



Λh − βES − µS = 0,

∂I(a)
∂a = −(µ+ ϕ(a))I(a),

V
∫ +∞

0
θ(a)I(a)da(1− E)− γE = 0,

I(0) = βES.

(3.4)

After calculation, the disease-free equilibrium W0 = (S0, 0, 0) always exists, and
the unique endemic equilibrium W1 = (S1, I1(a), E1) exists, if and only if Rb0 > 1,
where

S1 =
Λh
µ+ β

(
1 +

β

µRb0

)
, I1(a) = π(a)βS1E1, E1 =

Rb0 − 1

Rb0 + β
µ

. (3.5)

Next, we consider the global stability of equilibria of (2.7).

Theorem 3.5. The disease-free equilibrium W0 is GAS, if Rb0 ≤ 1, and the en-
demic equilibrium W1 is GAS, if Rb0 > 1.

Remark 3.4. In the within-host system, the case of g(E) = 0 means that the virus
in the environment does not infect the cells in the host. In such case, the virus in the
infected host will eventually be eradicated, and the disease caused by the virus will
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eventually be eliminated, when Rw0 < 1. In fact, Rw0 measures the invasiveness of
the virus to the healthy hosts. The virus can invade the hosts, if Rw0 > 1.

Combining with Theorems 3.2 and 3.5, we can conclude that the disease-free
equilibrium W0 of (2.7) and the infectious equilibrium U1 of (2.6) are GAS, if
Rb0 < 1 and Rw0 > 1. This shows that even if the disease can be eliminated the
virus still can survive in host. That is, the number of viruses in host is so low
that the infected host does not infect the susceptible hosts. It happens because
that although the transmitting capacity of the disease induced by virus is low, the
invasive ability of the virus is so strong that it can survive in the infected host.
It is even possible that the virus is gradually adapting to its hosts and becoming
less dangerous. We summarize the stability of equilibria of isolated fast and slow
systems in Table 2.

Table 2 Stability of equilibria.

Rb0 < 1 W0 GAS
U0 GAS Rw0 < 1 The diseases and virus will be eliminated.

U1 GAS Rw0 > 1 The virus can survive, but the disease will be eliminated.

Rb0 > 1 W1 GAS U2 GAS There is an endemic disease and the virus survival.

Remark 3.5. The between-host reproduction number Rb0 is dependent on the
virus equilibrium level V in the host. If Rb0 > 1, then the virus in the infected
host remains a positive equilibrium level V > 0, and the endemic equilibrium W1

is GAS. This means that the virus in the environment has an increasing effect on
the virus in the host, i.e.,

dE1

dV
=
µ(µ+ β)βS0

∫ +∞
0

θ(a)π(a)da

γ(µRb0 + β)2
> 0.

Theorem 3.3 shows that the virus always survives in the host no matter how strong
the invasive ability of the virus Rw0 is, and the equilibrium level is increased with
respect of E. Thus, the endemic disease is dependent on the transmitting capacity
of the disease Rb0.

In this subsection, we always assume that the amount of viruses in host is a
constant. In fact, the equilibrium level of V is an increasing function of E, and the
between-host reproduction number is also an increasing function of V . Therefore,
it is necessary to investigate the coupled system.

3.3. Disease dynamics of the coupled system

In the above subsections, we assume E and V are independent constants and in-
vestigate the isolated fast and slow systems respectively. Note that Ṽ in (3.3) is
an increasing function of E, and the solution (T (t), T ∗(t, a), V (t)) of isolated fast
system (2.6) has

lim
t→∞

(T (t), T ∗(t, τ), V (t)) =


U0 = (T0, 0, 0), for E = 0, Rw0 ≤ 1;

U1 = (T , T
∗
(a), V ), for E = 0, Rw0 > 1;

U2 = (T̃ (E), T̃ ∗E(a), Ṽ (E)), for E > 0.
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Thus, since E = 0 is the limit of E > 0 (E → 0), it only needs to consider the case of

E > 0. In this way, U2 = (T̃ (E), T̃ ∗E(a), Ṽ (E)) is the unique infectious equilibrium
of the fast system. When E > 0, since the within-host dynamics is faster than the
between-host dynamics, we can assume that the state of the within-host system has
reached its equilibrium. Let V (t) = Ṽ (E(t)). The system (2.7) can be rewritten as
the following coupled slow system

Ṡ(t) = Λh − βE(t)S(t)− µS(t),

∂I(t,a)
∂t + ∂I(t,a)

∂a = −(µ+ ϕ(a))I(t, a),

Ė(t) = (1− E(t)) Ṽ (E(t))
∫ +∞

0
θ(a)I(t, a)da− γE(t),

I(t, 0) = βE(t)S(t),

S(0) = s0, I(0, a) = ξ(a), E(0) = e0.

(3.6)

Note that the between-host reproduction number Rb0 is a linear increasing func-
tion of Ṽ (E), and the virus equilibrium level Ṽ (E) is an increasing function of E.

Furthermore, we have the following limiting behavior of the Ṽ (E), as E → 0:

Ṽ (0) = lim
E→0

Ṽ (E) =

0, for Rw0 ≤ 1,

m(Rw0−1)
k , for Rw0 > 1.

Thus, Rb0 ≥ R̂b0, where R̂b0 is defined as

R̂b0 :=
βS0Ṽ (0)

γ

∫ +∞

0

θ(a)π(a)da =

0, Rw0 ≤ 1,

βS0m(Rw0−1)
kγ

∫ +∞
0

θ(a)π(a)da, Rw0 > 1.

For the trivial case of Rw0 ≤ 1 and E(t) = 0, the virus in the infected host will
eventually be cleared and the disease caused by the virus will eventually be eliminat-
ed. Therefore, in the following discussion, we always assume the basic reproduction

number Rw0 > 1 or E(t) > 0. In this case, the quantity Ṽ (0) = m(Rw0−1)
k rep-

resents the number of viruses within a host at the initial stage of environmental
contamination. The term Ṽ (0)

∫ +∞
0

θ(a)π(a)da denotes the amount of viruses that
an infected host discharges into the environment at the beginning of the infectious
disease. S0 is the number of healthy host at the beginning of the infectious disease.
Therefore, R̂b0 indicates the number of secondary infected cases in which an infected
host can infect susceptible in their survival time at the early stage of infection.

Remark 3.6. Note that the basic reproduction number Rw0 is independent on E.
If Rw0 < 1, both equilibria U0 (for E = 0) and U2 (for E > 0) may be GAS for the
isolated fast system. Bistability may occur. We show this in Figure 6.

First, we consider the existence of equilibria of (3.6). Obviously, the coupled

system (3.6) has a disease-free equilibrium W0(S0, 0, 0) with S0 = Λh
µ . Let Ŵ =

(Ŝ, Î(a), Ê) denote the positive equilibrium of (3.6), which satisfies the following
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equations 

Λh − βÊŜ − µŜ = 0,

∂Î(a)
∂a = −(µ+ ϕ(a))Î(a),

(1− Ê)Ṽ (Ê)
∫ +∞

0
θ(a)Î(a)da− γÊ = 0,

Î(0) = βÊŜ.

(3.7)

As discussed in the above subsection, we have

Ŝ = µS0

βÊ+µ
, Î(a) = βÊŜπ(a), Ê =

Ṽ (Ê)
∫+∞
0

θ(a)Î(a)da

Ṽ (Ê)
∫+∞
0

θ(a)Î(a)da+γ
. (3.8)

Obviously, 0 < Ê < 1. Substituting Ŝ and Î(a) into the third equation of (3.7), it

follows that Ê satisfies H(Ê) = 0, where

H(Ê) = F (Ê)−G(Ê), F (Ê) = (1− Ê)Ṽ (Ê), G(Ê) =
γ(βÊ + µ)

µβS0

∫ +∞
0

θ(a)π(a)da
.

(3.9)

It can be shown that H has the following properties

H(0) = Ṽ (0)− γ

βS0

∫+∞
0

θ(a)π(a)da
= Ṽ (0)

(
1− 1

R̂b0

)
,

H(1) = − γ(β+µ)

µβS0

∫+∞
0

θ(a)π(a)da
< 0,

H ′(E) = 1−E
c

(
g′(E)−mNT̃ ′(E)

)
− Ṽ (Ê)− γ

µS0

∫+∞
0

θ(a)π(a)da
.

If Rw0 < 1, then Ṽ (0) = 0 and H(0) < 0. It is difficult to judge the sign of H ′(E),
we continue to compute

H ′′(E) = 1−E
c

(
g′′(E)−mNT̃ ′′(E)

)
− 2

c

(
g′(E)−mNT̃ ′(E))

)
.

Note that T̃ ′(E) < 0 and T̃ ′′(E) > 0, it follows that H ′′(E) < 0, for all 0 < E ≤ 1.
This shows that H(E) is an upper convex function. Let HM = max0≤E≤1H(E).

Based on the reproduction number R̂b0, we have obtained the following results.

Theorem 3.6. The existence of system (3.6) equilibria are as follows:

(i) The system (3.6) has a disease-free equilibrium W0.

(ii) If Rw0 < 1, then H(0) < 0 and (3.6) has two endemic equilibria Ŵ1 =

(Ŝ1, Î1(a), Ê1) and Ŵ2 = (Ŝ2, Î2(a), Ê2) with Ê1 < Ê2, if HM > 0; (3.6) has

one endemic equilibrium, if HM = 0, i.e., Ŵ1 = Ŵ2; (3.6) has no endemic
equilibrium, if HM < 0.

(iii) If Rw0 > 1, then Ṽ (0) > 0 and the following results hold.

(a)Assume R̂b0 < 1. The system (3.6) has two endemic equilibria Ŵ1 and

Ŵ2 with Ê1 < Ê2, if HM > 0; (3.6) has one endemic equilibrium, if HM = 0,

i.e., Ŵ1 = Ŵ2; (3.6) has no endemic equilibrium, if HM < 0.

(b)Assume R̂b0 > 1. The system (3.6) has a unique equilibrium Ŵ =

(Ŝ, Î(a), Ê).
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Theorem 3.7. The stability of system (3.6) equilibria are as follows:

(i) The disease-free equilibriumW0 is locally asymptotically stable (LAS), if R̂b0 <
1, and unstable, if R̂b0 > 1.

(ii) If (3.6) has a unique endemic equilibrium Ŵ , then Ŵ is LAS, when γ

µ+βÊ
≤ 1.

(iii) If (3.6) has two endemic equilibria Ŵ1 = (Ŝ1, Î1(a), Ê1) and Ŵ2 = (Ŝ2, Î2(a), Ê2)

with Ê1 < Ê2, then Ŵ1 is unstable, and Ŵ2 is LAS, when γ

µ+βÊ
≤ 1.

0 400 700
0

1

A DB C

31.5 116.3 635.4

Figure 3. The backward bifurcation and stability of the multiple endemic equilibria. It plots equilibri-

um Ê as a function of the clearance rate of virus c. The black and purple dotted lines, i.e., c = 31.5 and
c = 116.3, represent R̂b0 = 1 and Rw0 = 1 respectively. These dotted lines divide the plane into four
regions A, B, C and D. There is one stable endemic equilibrium in region A, two endemic equilibria,
where one is stable the other is unstable in regions B and C, but there is no endemic equilibrium in
region D. For R̂b0 < 1, there may be two branches with the solid and dashed branches representing
the stable and unstable interior equilibria respectively. The vertical arrows indicate the directions of
solutions as time tends to infinity. Depending on the initial conditions, E(t) will converge to either 0 or

Ê on the solid curve.

Remark 3.7. If R̂b0 < 1, γ

µ+βÊ
≤ 1 and HM > 0, then both equilibria W0 and W2

are LAS. In such case, bistability occurs. We show this in Figures 5 and 6.

Theorems 3.6 and 3.7 show that there is a backward bifurcation. For R̂b0 < 1 and
γ

µ+βÊ
≤ 1, the system has two endemic equilibria for HM > 0, where one is stable

and the other is unstable, and a unique stable endemic equilibrium for HM = 0.
Similarly, for Rw0 < 1 and γ

µ+βÊ
≤ 1, the above conclusions are obtained. This

can be shown in Figure 3. Besides, in this figure, there are four different stability
cases, which will be simulated respectively. Compared with results in [7, 14], the
backward bifurcation can occur not only at the case of Rw0 > 1 and R̂b0 < 1, but
also Rw0 < 1 and R̂b0 = 0.

For some infection diseases with multiscale, it is difficult to obtain the exper-
iment data characterized the biological relationship between the transmissibility
and viral kinetics. This leads to many obstacles to translate the theory result of
multiscale models into practical policies. In order to get relevant data by tailored
experiment, it is better to provide a preliminary understanding for the infectious dis-
ease mechanism. This can be realized by rigorous analytical and numerical analysis
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for the established models with multiscale. Then, we give a numerical simulations
for our model to provide some help design testable functional hypotheses.

Except c, other parameters are taken as g(E) = 4 × 105E, m = 1.5 × 10−2,
k = 1.5 × 10−3, Λc = 8.5 × 103, N = 0.1368, Λh = 70, β = 0.1, µ = 7 × 10−3,
γ = 1.5×10−2, θ(a) = 1.5×10−8 and ϕ(a) = 0.045

1+5e−0.05a . After calculation, we have

Rw0 = 1 and R̂b0 = 1 that are equivalent to c = 31.5 and c = 116.3, and thresholds
Rw0 and R̂b0 are a decreasing function of c. As shown in Figure 3, increasing the
clearance rate of c from 0 to 635.4 yields that the coupled system has at least one
positive equilibrium. Once the value of c is above 635.4 the positive equilibria will
disappear, leaving only the disease-free equilibrium. Next, we show the dynamics,
which is dependent on the clearance rate c in the four regions of Figure 3.

In region A, i.e., 0 < c < 31.5, take c = 20 as an example. The calculation
yields that Rw0 = 5.814 > 1, R̂b0 = 1.7889 > 1, Ê = 0.95. Therefore, we know
γ

µ+βÊ
= 0.1406 < 1. Figure 4 shows that the endemic equilibrium Ŵ is LAS,

and the disease-free equilibrium W0 is unstable for system (3.6). In such case, the
solution behavior is not dependent on the initial conditions.
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Figure 4. (a) Time series of S(t); (b) The age distribution of I(t, a); (c) Time series of E(t). It shows

that solutions will converge to an endemic equilibrium Ŵ .

In region B, i.e., 31.5 < c < 116.3, take c = 100 as an example. By calculation,
we obtain Rw0 = 1.163 > 1 and R̂b0 = 0.0605 < 1. The numerical simulations
given in Figure 5 show that the disease-free equilibrium W0 = (10000, 0, 0) and

an endemic equilibrium Ŵ2 are LAS for system (3.6). In such case, the solution
behavior is dependent on the initial conditions. For example in Figure 5 (c), in order
to eliminate the disease we can control the initial level of E(t) below a threshold
0.059 (E0 < 0.059). However, if the initial level of E(t) is above the threshold 0.059
(E0 > 0.059), the disease can develop an endemic disease.
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Figure 5. (a) Time series of S(t); (b) The age distribution of I(t, a); (c) Time series of E(t). It shows

that solutions will converge to either the infection-free equilibrium W0 or the positive equilibrium Ŵ2,
depending on initial conditions.

In region C, i.e., 116.3 < c < 635.4, take c = 200 as an example. By calculation,
we obtain Rw0 = 0.5814 < 1 and R̂b0 = 0. Meanwhile, bistability occurs and the
solution behavior is dependent on the initial conditions. Combined with different
initial conditions, some biological meanings can be similarly given as in the above
case.
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Figure 6. (a) Time series of S(t); (b) The age distribution of I(t, a); (c) Time series of E(t). It shows

that solutions will converge to either the infection-free equilibrium W0 or the endemic equilibrium Ŵ2,
depending on initial conditions.

In region D, i.e., 635.4 < c, take c = 650 as an example. By calculation, we
obtain Rw0 = 0.1789 < 1 and R̂b0 = 0 in Figure 7. In such case, there is no endemic
equilibrium, and the unique infection-free equilibrium W0 is stable.
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Figure 7. (a) Time series of S(t); (b) The age distribution of I(t, a); (c) Time series of E(t). It shows
that solutions will converge to the infection-free equilibrium W0.

4. Discussion

In order to consider the individual difference, we propose an infection-age structured
epidemic model for coupling within- and between-host dynamics in environmentally-
driven infectious diseases. The model is described by a mixed system of ordinary
and partial differential equations, which is divided into a fast time and a slow time
systems with age structure by using the idea of perturbation theory. The separate
method in [8] is extended to the age structured model.

For the isolated fast and slow systems, combined with the basic reproduction
numbers Rw0 and Rb0, we give the complete global dynamics by using the lineariza-
tion method and Lyapunov function respectively. However, for the coupled system,
it is difficult to obtain the global results. The analysis shows that the existence
of the positive equilibria has many cases. When the system has two positive equi-
libria, a backward bifurcation can occur. This happens because that the disease
is driven by the virus contaminated environment which links the within-host sys-
tem to the between-host variable. Besides, the positive equilibrium U2 of the fast
system is always GAS whether the within-host reproduction number is greater or
less than 1. In the coupled system, the existence of equilibria is dependent on the
limit equilibrium Ṽ (E), which may be a nonlinear function of E. Thus, there may
be multiple positive equilibria and backward bifurcation. A question we want to
know whether the unique positive equilibrium of the coupled system is GAS. This
remains a question in the future.

The coupled system we analysised in subsection 3.3 is not the full system. It does
not tell us the role of the important linked function g(E) on the dynamics of the
full system. Besides, we consider only a linear representation of g(E). In fact, there
are different forms of g(E) to describe the linked relation between the within- and
between-host disease driven by contaminated environment. For example, authors in
[2] proposed three functional forms to express transmission rates based on viral load,
including linear, logical and Michaelis-Menten functions, and showed that there are
significant differences between the three forms. Therefore, it is an interesting but
challenging problem to consider the different forms in mathematical analysis and
numerical simulation for the full system, and we leave it for future investigation.

Our results presented in this paper extend those in [7, 14]. If the parameters
related to infection age are constants, that is, δ(a) = δ, p(a) = p and ϕ(a) = ϕ,
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θ(a) = θ, the system (2.1) is simplified to the system of [7]

Ṫ (t) = Λc − kV (t)T (t)−mT (t),

Ṫ ∗(t) = kV (t)T (t)− (m+ δ)T ∗(t),

V̇ (t) = g(E) + δpT ∗(t)− cV (t),

S′(t) = Λh − βE(t)S(t)− µS(t),

I ′(t) = βE(t)S(t)− (µ+ ϕ)I(t),

E′(t) =
(
1− E(t)

)
V (t)θI(t)− γE(t).

(4.1)

The results and some important thresholds of [7] can be directly obtain from this
work. However, the existence and stability of positive equilibria for the case of
Rw0 < 1 in [7] are not studied. This work provides complementary results as
follows.

Theorem 4.1. If Rw0 < 1, then H(0) < 0 and (4.1) has two equilibria Ŵ1 and

Ŵ2, if HM > 0; (4.1) has one positive equilibrium, if HM = 0, i.e., Ŵ1 = Ŵ2; (4.1)
has no positive equilibrium, if HM < 0.

Theorem 4.2. The disease-free equilibrium W0 is LAS, if R̂b0 < 1, and unstable,
if R̂b0 > 1. If (4.1) has two positive equilibria Ŵ1 and Ŵ2, then Ŵ1 is unstable and

Ŵ2 is LAS, when γ

µ+βÊ
≤ 1.

If the difference of the cell is not taken into account, i.e., δ(a) = δ, p(a) = p, the
system (2.1) is simplified to

Ṫ (t) = Λc − kV (t)T (t)−mT (t),

Ṫ ∗(t) = kV (t)T (t)− (m+ δ)T ∗(t),

V̇ (t) = g(E) + δpT ∗(t)− cV (t),

Ṡ(t) = Λh − βE(t)S(t)− µS(t),

∂I(t,a)
∂t + ∂I(t,a)

∂a = −(µ+ ϕ(a))I(t, a),

Ė(t) = (1− E(t))V (t)
∫ +∞

0
θ(a)I(t, a)da− γE(t).

In this case, it has been studied in [14]. However, our conclusions also can generalize
conclusions of [14].

Furthermore, the model can be reduced to a stage-structured model by intro-
ducing the insidious periods of between-host and within-host, τ1 and τ2 respective-
ly. That is, the total exposed and infected cells are T ∗1 (t) =

∫ τ1
0
T ∗(t, a)da and

T ∗2 (t) =
∫ +∞
τ1

T ∗(t, a)da. The exposed and infected hosts are I1(t) =
∫ τ2

0
I(t, a)da

and I2(t) =
∫ +∞
τ2

I(t, a)da, which can be defined by assuming these functions as

δ(a) =


0, 0 < a < τ1,

δ, a > τ1,
p(a) =


0, 0 < a < τ1,

p, a > τ1,
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and

ϕ(a) =


0, 0 < a < τ2,

ϕ, a > τ2,
θ(a) =


0, 0 < a < τ2,

θ, a > τ2.

Combined with (2.6) and (2.7), the full system is simplified to the following system

Ṫ (t) = Λc − kV (t)T (t)−mT (t),

Ṫ ∗1 (t) = −mT ∗1 (t) + kV (t)T (t)− kV (t− τ1)T (t− τ1)e−mτ1 ,

Ṫ ∗2 (t) = −(m+ δ)T ∗2 (t) + kV (t− τ1)T (t− τ1)e−mτ1 ,

V̇ (t) = g(E) + δpT ∗2 (t)− cV (t),

Ṡ(t) = Λh − βE(t)S(t)− µS(t),

İ1(t) = −µI1(t) + βE(t)S(t)− βE(t− τ2)S(t− τ2)e−µτ2 ,

İ2(t) = −(µ+ ϕ)I2(t) + βE(t− τ2)S(t− τ2)e−µτ2 ,

Ė(t) = (1− E(t))V (t)θI2(t)− γE(t).

(4.2)

We claim that the stage-structured model is not a special case of the age structured
model, which are not equivalent. In fact, Theorem 3.3 shows that the fast system
has a unique positive equilibrium, which is GAS, when E > 0. However, a numerical
simulation implies that the equilibrium of the fast stage-structured model is unstable
(see Figure 8). Note that the T ∗1 (t) equation is decoupled from the equations of
T (t), T ∗2 (t) and V (t). For the fast system, we only need to consider the three
equations for T (t), T ∗2 (t) and V (t). The parameters can be taken as g(E) = 1.5,
m = 0.3, k = 2.4 × 10−5, Λc = 9 × 103, c = 2.1, δ = 0.03 and p = 400. The
numerical simulation given in Figure 8 shows that the solutions with initial values
(751, 8520, 487000) are periodic oscillatory. As we know, the dynamics of (4.2)
remains a challenging problem.
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Figure 8. The periodic oscillatory of the solutions of fast stage-structured model with τ1 = 1.9. The
other parameters has been taken as above: (a) Time series of T (t); (b) Time series of T∗2 (t); (c) Time
series of V (t).
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Appendix

Proof of Theorem 3.1. Suppose it is not true, then there will be a minimum
time t1, so that T (t1) = 0, Ṫ (t1) ≤ 0 and T (t) > 0, when 0 ≤ t ≤ t1. It is in
contradiction with Ṫ (t1) = Λc > 0. Hence, T (t) > 0 for all t ≥ 0.

From (2.2), T ∗(t, a) remains positive for nonnegative initial dates and boundary
conditions. Putting T ∗(t, a) in (2.2) into V̇ (t), we have

V̇ (t) = g(E) +
∫ t

0
kV (a)T (a)e−

∫ t−a
0

[m+δ(r)]drδ(t− a)p(t− a)da

+
∫∞
t
η(a− t)e−

∫ t
0

[m+δ(r+a−t)]drδ(a)p(a)da− cV (t).

If there exists minimum time t1, so that V (t) > 0 on t ∈ [0, t1) and V (t1) = 0.
Then, V̇ (t1) ≤ 0. However, according to the above equation, we derive

V̇ (t1) = g(E) +
∫ t1

0
kV (a)T (a)e−

∫ t1−a
0 [m+δ(r)]drδ(t1 − a)p(t1 − a)da

+
∫∞
t1
η(a− t1)e−

∫ t1
0 [m+δ(r+a−t1)]drδ(a)p(a)da > 0.

This gives a contradiction. Hence, V (t) > 0, for all t ≥ 0.
Next, we prove that the solution of (2.6) is bounded. Let W (t) = T (t) +∫ +∞

0
T ∗(t, a)da. It follows that

Ẇ (t) = Λc −mT (t)−
∫ +∞

0
(m+ δ(a))T ∗(t, a)da ≤ Λc −mW (t).

Therefore, lim supt→∞W (t) ≤ Λc
m and T ∗(t, a) < Λc

m . Additionally,

V̇ (t) < g(E) + Λc
m

∫ +∞
0

δ(a)p(a)da− cV (t) = −cV (t) +A,

where A = g(E) + Λc
m

∫ +∞
0

δ(a)p(a)da. The assumption of g(E) shows that it is

bounded, if E is bounded. Therefore, lim supt→∞ V (t) ≤ A
c . This completes the

proof. �

Proof of Theorem 3.2. First, we consider the LAS of the infection-free equilib-
rium U0. Transmitting U0 to the original point and linearizing (2.6) at (0, 0, 0)
yields 

˙T (t) = −kT0V (t)−mT (t),

∂T∗(t,a)
∂a + ∂T∗(t,a)

∂t = −(m+ δ(a))T ∗(t, a),

˙V (t) =
∫ +∞

0
δ(a)p(a)T ∗(t, a)da− cV (t),

T ∗(t, 0) = kT0V (t).

(A.1)

Suppose T (t) = c1e
λt, V (t) = c2e

λt, T ∗(t, a) = c3(a)eλt are solutions of (A.1). We
obtain 

λ+m 0 1

0 λ+ c −
∫ +∞

0
δ(a)p(a)σ(a)e−λada

0 −kT0 1




c1

c2

c3(0)

 = 0.
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Therefore, we get the characteristic equation at U0

(λ+m)

(
λ+ c− kT0

∫ +∞

0

δ(a)p(a)σ(a)e−λada

)
= 0. (A.2)

One root of (A.2) is λ = −m, and the other satisfies λ+c−kT0

∫ +∞
0

δ(a)p(a)σ(a)e−λa

da = 0. Furthermore, we have

kT0

∫ +∞
0

δ(a)p(a)σ(a)e−λada

λ+ c
= 1. (A.3)

To continue, (A.3) can be transformed into the following form

λ =
kT0

Rw0

∫ +∞

0

δ(a)p(a)σ(a)(Rw0e
−λa − 1)da.

Suppose λ = u+ iv is a root of the above equation. Therefore, the real part of λ is

u ≤ kT0

Rw0

∫ +∞
0

δ(a)p(a)σ(a)(Rw0e
−ua − 1)da.

If Rw0 < 1, then Rw0e
−ua − 1 < 0 and all roots of characteristic equation have

negative real parts. Accordingly, the equilibrium U0 is LAS, if Rw0 < 1.
To prove that U0 = (T0, 0, 0) is GAS, we introduce a Lyapunov function

L1(t) = T (t)− T0 − T0 ln
T (t)

T0
+

∫ +∞

0

K1(a)T ∗(t, a)da+
kT0

c
V (t), (A.4)

where K1(a) = kT0

c

∫ +∞
a

δ(θ)p(θ)e−
∫ θ
a

(m+δ(r))drdθ. A direct calculation shows that

K ′1(a) = −kT0

c δ(a)p(a)+(m+ δ(a))K1(a) and K1(0) = Rw0. Taking the derivative
of L1(t) along (A.4), we obtain

L̇1(t) = −m(T (t)−T0)2

T (t) − kT (t)V (t) + kT0V (t)

−
∫ +∞

0
K1(a)

((
m+ δ(a)

)
T ∗(t, a) + ∂T∗(t,a)

∂a

)
da

+ kT0

c

∫ +∞
0

δ(a)p(a)T ∗(t, a)da− kT0V (t)

= −m(T (t)−T0)2

T (t) − kT (t)V (t)−K1(a)T ∗(t, a)

∣∣∣∣a=∞

a=0

+
∫ +∞

0
K ′1(a)T ∗(t, a)da

+
∫ +∞

0

(
kT0

c δ(a)p(a)−K1(a)
(
m+ δ(a)

))
T ∗(t, a)da

= −m(T (t)−T0)2

T (t) + kV (t)T (t)(Rw0 − 1).

(A.5)

When Rw0 < 1, we have dL1(t)
dt ≤ 0. Furthermore, the equality dL1(t)

dt = 0 holds, if
and only if T (t) = T0, T

∗(t, a) = 0, V (t) = 0. Hence, U0 is GAS, if Rw0 < 1.

Next, we consider the LAS of the infectious equilibrium U1 = (T , T
∗
(a), V ).

First, transmitting U1 to the original point and linearizing (2.6) at (0, 0, 0). Second,
we get the characteristic equation at U1

(λ+m+ kV )

(
λ

c
+ 1

)
= (λ+m)

∫ +∞
0

δ(a)p(a)σ(a)e−λada∫ +∞
0

δ(a)p(a)σ(a)da
. (A.6)
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It is easy to see that the modulus of λ + m + kV is larger than the modulus of

λ + m, the modulus of
∫+∞
0

δ(a)p(a)σ(a)e−λada∫+∞
0

δ(a)p(a)σ(a)da
is smaller than 1 and the modulus of

λ
c + 1 is greater than 1. Therefore, the modulus of left hand side is greater than the
modulus of the right hand side, when Rw0 > 1, this is a contradiction. In a word,
the equilibrium U1 = (T , T

∗
(a), V ) is LAS, if Rw0 > 1.

To prove the GAS of the equilibrium U1, we introduce the other Lyapunov
function

L2(t) = T (t)− T − T ln T (t)

T
+ 1

N

∫∞
0
K2(a)T

∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

)
da

+ 1
N

(
V (t)− V − V ln V (t)

V

)
,

(A.7)

where K2(a) =
∫ +∞
a

δ(θ)p(θ)e−
∫ θ
a

(m+δ(r))drdθ. Clearly K2(0) =
∫ +∞

0
δ(a)p(a)σ(a)

da = N . By using Λc = kV T +mT and T = c
kN , computing the derivative of L2(t)

yields that

L̇2(t) = − m
T (t)

(
T (t)− T

)2
+ kV T − kV (t)T (t)− kV T T

T (t)

− 1
N

∫∞
0
K2(a)

(
1− T

∗
(a)

T∗(t,a)

)
∂T∗(t,a)

∂a da

− 1
N

∫∞
0
K2(a)

(
m+ δ(a)

)
T ∗(t, a)

(
1− T

∗
(a)

T∗(t,a)

)
da

+ 1
N

∫∞
0
δ(a)p(a)T ∗(t, a)da− V

NV (t)

∫∞
0
δ(a)p(a)T ∗(t, a)da+ cV

N .

(A.8)

It is easy to compute that

d
da

(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

)
= 1

T
∗
(a)

(
1− T

∗
(a)

T∗(t,a)

)
∂
∂aT

∗(t, a)

+
(

1− T
∗
(a)

T∗(t,a)

)
(m+δ(a))T∗(t,a)

T
∗
(a)

.

Hence, (
1− T

∗
(a)

T∗(t,a)

)
∂T∗(t,a)

∂a = T
∗
(a) dda

(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

)
+ (m+ δ(a))

(
T
∗
(a)− T ∗(t, a)

)
.

Then, using integration by parts, it follows that∫∞
0
K2(a)

(
1− T

∗
(a)

T∗(t,a)

)
∂T∗(t,a)

∂a da

= K2(a)T
∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

) ∣∣∣∣a=∞

a=0

−
∫∞

0

(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

)(
K ′2(a)T

∗
(a) +K2(a) ddaT

∗
(a)
)
da

+
∫∞

0
K2(a)

(
(m+ δ(a))T

∗
(a)− (m+ δ(a))T ∗(t, a)

)
da.

(A.9)

Note that

K2(0)T
∗
(0)
(
T∗(t,0)

T
∗
(0)
− 1− ln T∗(t,0)

T
∗
(0)

)
= NkV T

(
T (t)V (t)

TV
− 1− ln T (t)V (t)

TV

)
.

(A.10)
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Putting it into (A.9), it follows from (A.3) that∫∞
0
K2(a)

(
1− T

∗
(a)

T∗(t,a)

)
∂T∗(t,a)

∂a da

= K2(a)T
∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

) ∣∣∣∣
a=∞

−NkV T
(
T (t)V (t)

TV
− 1− ln T (t)V (t)

TV

)
+
∫∞

0
δ(a)p(a)T

∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

)
da

+
∫∞

0
K(a) (m+ δ(a))

(
T
∗
(a)− T ∗(t, a)

)
da.

Hence,∫∞
0
K2(a)

(
1− T

∗
(a)

T∗(t,a)

)
∂T∗(t,a)

∂a da+
∫∞

0
K2(a)(m+ δ(a))T ∗(t, a)

(
1− T

∗
(a)

T∗(t,a)

)
da

= K2(a)T
∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

) ∣∣∣∣
a=∞

−NkV (t)T (t) +NkTV +NkTV ln T (t)V (t)

TV

+
∫∞

0
δ(a)p(a)T

∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

)
da.

Since cV
N = 1

N

∫∞
0
δ(a)p(a)T

∗
(a)da, we have

dL2(t)
dt = − m

T (t) (T (t)− T )2 − 1
NK2(a)T

∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

) ∣∣∣∣
a=∞

+ 1
N

∫∞
0
δ(a)p(a)T

∗
(a)
(

1− T
T (t) + ln V T

V (t)T (t)

)
da

+ 1
N

∫∞
0
δ(a)p(a)T

∗
(a)
(

1− V
V (t)

T∗(t,a)

T
∗
(a)

+ ln T∗(t,a)

T
∗
(a)

)
da.

(A.11)

Note that ln V T
V (t)T (t) + ln T∗(t,a)

T
∗
(a)

= ln T
T (t) + ln V T∗(t,a)

V (t)T
∗
(a)

, and putting it into (A.11),

we have

dL2(t)
dt = − m

T (t) (T (t)− T )2 − 1
NK2(a)T

∗
(a)
(
T∗(t,a)

T
∗
(a)
− 1− ln T∗(t,a)

T
∗
(a)

) ∣∣∣∣
a=∞

+ 1
N

∫∞
0
δ(a)p(a)T

∗
(a)
(

1− T
T (t) + ln T

T (t)

)
da

+ 1
N

∫∞
0
δ(a)p(a)T

∗
(a)
(

1− V
V (t)

T∗(t,a)

T
∗
(a)

+ ln V T∗(t,a)

V (t)T
∗
(a)

)
da.

(A.12)
We find that all of the terms have the properties of function h(x) = x − 1 − lnx.
This means that positive-definite function L2(t) has negative derivative. Therefore,

the equality d
dtL2(t) = 0, if and only if T (t) = T , T ∗(t, a) = T

∗
(a) and V (t) = V .

Hence, if Rw0 > 1, then the equilibrium U1 = (T , T
∗
(a), V ) is GAS. This completes

the proof. �

Proof of Theorem 3.3. The proof of Theorem 3.3 is same as the case of U1 in
Theorem 3.2. In fact, the infection equilibrium U1 exists, only when Rw0 > 1 and
E = 0. However, if E > 0, the positive equilibrium is unique existent without any
condition. Thus, it is easy to verify the result of Theorem 3.3 from the proof of the
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GAS of U1. �

The proofs of Theorems 3.4 and 3.5 are similar as Theorems 3.1 and 3.2.

Proof of Theorem 3.7. Let Ŵ = (Ŝ, Î(a), Ê) be any equilibrium of system (3.6).

Linearizing the system (3.6) at Ŵ , we have

dS(t)
dt = −(µ+ βÊ)S(t)− βŜE(t),

∂I(t,a)
∂a + ∂I(t,a)

∂t = −(µ+ δ(a))I(t, a),

dE(t)
dt = (1− Ê)Ṽ (Ê)

∫ +∞
0

θ(a)I(t, a)da

+
[∫ +∞

0
θ(a)Î(a)da ·

(
Ṽ ′(Ê)(1− Ê)− Ṽ (Ê)

)]
E(t)− γE(t),

I(t, 0) = βÊS(t) + βŜE(t).

(A.13)

(i) For the disease-free equilibrium W0, there are two cases to discuss. If Rw0 ≤
1, then Ṽ (0) = 0. The three variables S(t), E(t) and I(t, a) are decreasing and W0

is LAS. If Rw0 > 1, then Ṽ (0) > 0. We have the following characteristic equation

(λ+ µ)
(
λ+ γ − βS0Ṽ (0)

∫ +∞
0

θ(a)π(a)e−λada
)

= 0.

We claim W0 is LAS, if R̂b0 < 1. Otherwise, there is a root λ = σ1 + iσ2 with
σ1 > 0. Substituting it into the second term, the real part satisfies

σ1 = γ
(
βS0Ṽ (0)

γ

∫ +∞
0

θ(a)π(a)e−σ1a cos(σ2a)da− 1
)
≤ γ

(
R̂b0 − 1

)
< 0.

This is a contradiction.
Set

f1(λ) = γ
(
λ
γ + 1− βS0Ṽ (0)

γ

∫ +∞
0

θ(a)π(a)e−λada
)
.

Note that f1(0) = γ
(

1− R̂b0
)

and limλ→∞ f1(λ) = 0. If R̂b0 > 1, the continuity

and differentiability of the function f1(λ) tell us that there is at least one positive
root. Accordingly, equilibriumW0 is unstable, when R̂b0 > 1, and is LAS, if R̂b0 < 1.

(ii) For the unique positive equilibrium Ŵ = (Ŝ, Î(a), Ê), the characteristic

equation of system (3.6) at Ŵ can be established as follows

βŜ(1− Ê)Ṽ (Ê)
∫ +∞

0
θ(a)π(a)e−λada = λ+µ+βÊ

λ+µ

(
λ+ γQ(Ê)

F (Ê)

)
, (A.14)

where Q(E) = F (E) − EF ′(E) and F (E) is mentioned in (3.9). Clearly, F ′(E) =

Ṽ ′(E)(1−E)− Ṽ (E) and Q′(E) = −EF ′′(E) > 0. For the sake of convenience, set

LH(λ) = βŜ(1− Ê)Ṽ (Ê)
∫ +∞

0
θ(a)π(a)e−λada, RH(λ) = λ+µ+βÊ

λ+µ

(
λ+ γQ(Ê)

F (Ê)

)
.

By contradiction, we assume that the equilibrium Ŵ is unstable, when γ

µ+βÊ
≤ 1.

That is, the characteristic equation has at least one root λ = u+ iv with u ≥ 0. In
this case, we can get following results

LH = βŜ(1− Ê)Ṽ (Ê)
∫ +∞

0
θ(a)π(a)e−ua (cos(av)− i sin(av)) da,

RH = 1
(u+µ)2+v2

(
(u+ µ+ βÊ)(u+ µ) + v2 − ivβÊ

)(
u+ γQ(Ê)

F (Ê)
+ iv

)
.
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Thus, Re(LH) ≤ βŜ(1− Ê)Ṽ (Ê)
∫ +∞

0
θ(a)π(a)da = γ. Taking the real part yields

Re(RH) = 1
(u+µ)2+v2

(
(u+ µ+ βÊ)(u+ µ) + v2

)(
u+ γQ(Ê)

F (Ê)

)
+ βÊ2v

2.

Based on the definition and properties of F (E), G(E) and Q(E), it follows that

H(Ê) − ÊH ′(Ê) > 0 (since H(Ê) = 0 and H ′(Ê) < 0). That is, Q(Ê) > γ·(
βS0

∫ +∞
0

θ(a)π(a)da
)−1

. Thus, we have Q(Ê)

F (Ê)
> µ

µ+βÊ
. Furthermore, we know

Re(RH) > u+ γµ

µ+βÊ
+ f(u, v), where f(u, v) =

βÊ(u+µ)
(
u+ γµ

µ+βÊ

)
+βÊv2

(u+µ)2+v2 ,

for (u, v) ∈ R2
+. For obtaining the minimum fmin of f in R2

+, we derive the partial
derivative of f(u, v) with respect to u and v

∂f(u, v)
∂u = v2−(u+µ)2

[(u+µ)2+v2]2
βÊµ

(
γ

µ+βÊ
− 1
)
, ∂f(u, v)

∂v = 2(u+µ)v

[(u+µ)2+v2]2
βÊµ

(
1− γ

µ+βÊ

)
.

Note that ∂f(u, v)
∂u = 0 ⇔ v2 − (u+ µ)2 = 0 and ∂f(u, v)

∂v = 0 ⇔ (u+ µ)n = 0. This
shows that f(u, v) has only a stationary point (−µ, 0) in R2, and this stationary
point is not in the first quadrant. Thus, the minimum of f(u, v) in R2

+ is reached
at the boundary ∂R2

+.

If γ

µ+βÊ
< 1, it is easy to obtain that ∂f(u, v)

∂u > 0, when v = 0 and ∂f(u, v)
∂v > 0,

when u = 0. Hence, we have fmin = f(0, 0) = γβÊ

µ+βÊ
. Furthermore,

Re(RH) > u+ µ+ βÊ(u+µ)
(u+µ)2+v2

(
u+ γβÊ

µ+βÊ

)
+ βÊv2 ≥ γµ

µ+βÊ
+ γβÊ

µ+βÊ
= γ,

which is a contradiction.
If γ

µ+βÊ
= 1, we directly have

Re(RH) > u+ µ+ βÊ(u+µ)(u+µ)+βÊv2

(u+µ)2+v2 ≥ µ+ βÊ = γ,

which leads to a contradiction. Therefore, Ŵ is LAS, if γ

µ+βÊ
≤ 1.

(iii) In such case, we have H ′(Ê1) > 0 and H ′(Ê2) < 0.

For the equilibrium Ŵ1 = (Ŝ1, Î1(a), Ê1), we can rewrite the equation (A.14) in
the following form f2(λ) = 1, where

f2(λ) =
(λ+µ)βŜ1(1−Ê1)Ṽ (Ê1)

∫+∞
0

θ(a)π(a)e−λada

(λ+µ+βÊ1)
(
λ+

γQ(Ê1)

F (Ê1)

) .

Based on the definition and properties of F (E), G(E) and Q(E), we have the result

H(Ê1) − Ê1H
′(Ê1) < 0. That is, Q(Ê1) < γ

(
βS0

∫ +∞
0

θ(a)π(a)da
)−1

. Hence,

when λ = 0, we drive

f2(0) =
βŜ1µ(1−Ê1)Ṽ (Ê1)

∫+∞
0

θ(a)π(a)da

(µ+βÊ1)
γQ(Ê1)

F (Ê1)

>
βŜ1(1−Ê1)Ṽ (Ê1)

∫+∞
0

θ(a)π(a)da

γ = 1.

At present, we obtain f2(0) > 1 and limλ→∞ f2(λ) = 0. Consequently, the charac-

teristic equation at Ŵ1 at least has a unique positive part thanks to the continuity
of f1(λ). In other words, Ŵ1 is unstable.

If γ

µ+βÊ
≤ 1, the positive equilibrium Ŵ2 is LAS similar to the discussion of

case ii. �
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