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Abstract In this manuscript, by using (H,¢) — n-monotone operators we
study the existence of solution of a system of variational-like inclusion problems
in Banach spaces. Further, we suggest an iterative algorithm for finding the
approximate solution of this system and discuss the convergence criteria of
the sequences generated by the iterative algorithm. The method used in this
paper can be considered as an extension of methods for studying the existence
of solution for various classes of variational inclusions considered and studied
by many authors in Banach spaces.
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1. Introduction

A widely studied problem known as variational inclusion problem have many ap-
plications in the fields of optimization and control, economics and transportation
equilibrium, engineering sciences, etc. Several researchers used different approaches
to develop iterative algorithms for solving various classes of variational inequality
and variational inclusion problems. In details, we refer [2-5, 9-14, 20, 22-24] and the
references therein. Recently Bhat and Shafi, Fang and Huang, Kazmi and Khan,
and Lan et al. investigated several resolvent operators for generalized operators such
as H-monotone [1, 3], H-accretive [4], (P, n)-proximal point [9], (P, n)-accretive [10],
(H,n)-monotone [5], (A,n)-accretive [14] and mappings.

From the above results, in this manuscript, we intend to define the resolvent
operator associated with (H, ) — n-monotone mappings in Banach spaces. Using
resolvent operator technique, we develop an iterative algorithm for solving the sys-
tem of variational-like inclusion problems and prove that the sequences generated
by the iterative algorithm converge strongly to a solution of the system. The results
presented in this paper improve and extend many known results in the literature,
see for example [6-8, 15-19, 23].
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2. Resolvent operator and formulation of problem

We need the following definitions and results from the literature.

Let X be a real Banach space equipped with norm ||.|| and X* be the topological
dual space of X. Let < .,. > be the dual pair between X and X* and 2% be the
power set of X.

Definition 2.1 [21]. For ¢ > 1, a mapping J, : X — 2% is said to be generalized
duality mapping, if it is defined by

Jo() = {f € X*: (z, f) = |lz||9, =] *~" = IflI}, VzeX.
In particular, J; is the usual normalized duality mapping on X, given as
Jo(@) = |e]7 2o x), Va(#0) € X,

Note that if X = H, a real Hilbert space, then J; becomes the identity mapping
on X.

Definition 2.2 [21]. A Banach space X is said to be smooth if, for every z € X
with ||z|| = 1, there exists a unique f € X* such that || f|| = f(z) = 1.

The modulus of smoothness of X is the function px : [0,00) — [0, 00), defined
by

2
Definition 2.3 [21]. A Banach space X is said to be

(i) uniformly smooth if lim L(J)
o—0 o

T4yl + T =
px<o>:sup{ Ul y”—lzx,yex,x||=1,||y||:a}-

:O7

(ii) g-uniformly smooth, for ¢ > 1, if there exists a constant ¢ > 0 such that
px(0) <col, o €[0,00).
Note that if X is uniformly smooth, .J; becomes single-valued.

Lemma 2.1. [21] Let ¢ > 1 be a real number and let X be a smooth Banach space.
Then, the following statements are equivalent:

(i) X is qg-uniformly smooth.

(i1) There is a constant ¢, > 0 such that for every x,y € X, the following inequality
holds
e +yl* < [lz|? + afy, Jg(2)) + cqllyll*.

Definition 2.4. Let X be a real Banach space. Let A : X — X* T : X x X —
X*n:X xX — X be single-valued mappings and M : X x X — 2X" be multi-
valued mapping. Then

(i) A is said to be monotone, if
<Ax — Ay, (x — y)> >0, Vz,ye X.
(ii) A is said to be n-monotone, if

<Am— Ay, n(x —y)> >0, Va,ye X.
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(iii) A is said to be strictly n-monotone, if A is n-monotone and equality holds if
and only if z = y.

(iv) A is said to be é-strongly n-monotone if there exists a constant 6 > 0 such
that
(Az = Ay.n(a,y)) = ozl oy e X.

(v) Ais said to be A-Lipschitz continous if there exists a constant A > 0 such that
|4z = Ay| < Ale — yl, Vo,yex.

(vi) T'(.,.) is said to be di-Lipschitz continuous in the first argument if there exists
a constant d; > 0 such that

|72 =T, )| < dillz =yl Vo,p.2 € X,

In a similar way, we can define the Lipschitz continuity of the mapping T'(., .)
in the second argument.

(vii) n is said to be 7-Lipschitz continuous, if there exists a constant 7 > 0 such
that
@) < 7l —ll, vayex,

(viii) M is said to be p-monotone in first argument, if
<u—v,n(x,y)> >0, Ve,y € X, Yu € M(x,2),v € M(y, z), for each fixed z € X,

(ix) M is said to be strictly n-monotone, if M is n- monotone and equality holds
if and only if x = y.

Definition 2.5. Let H : X — X*,p: X* - X*,nn: X x X — X be single-valued
mappings and let M : X x X — 2% " be a multi-valued mapping. The mapping M
is said to be (H, ) — n— monotone, if ¢ o M(.,t) is n-monotone in first argument
and (H 4+ @ o M(.,t))(X) = X*, for each fixed t € X.

Definition 2.6. Let T : X x X — X*,p: X — X* be single-valued mappings.
Then the mapping T is called

(i) e-p-cocoercive in the second argument if there exists a constant e > 0 such
that Vz,y,u,v e X,

(T(x,u) = T(x,v), Jg" (p(u) — p(v))) = e[| T(z, u) = T(z,v)|*.
where J7 : X* — X** is the generalized mapping on X*.

Definition 2.7. Let B,H : X — X* and g : X — X be single-valued mappings.
Then the mapping B is said to be A-strongly accretive with respect to H(g) if there
exists a constant A > 0, such that

(Bx — By, J;"(H(g(@)) = H(g(y)))) = Al — "

where J; : X* — X** is the generalized mapping on X*.
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Theorem 2.1. Let X be a real Banach space. Let ¢ : X* - X*n: X x X - X
be single-valued mappings, H : X — X* be a strictly n-monotone mapping and
M : X xX — 2% bea(H,p)—n— monotone mapping. If (u—wv,n(x,y)) > 0 holds
Y(y,v) € Graph(p o M(.,t)), then (x,u) € Graph(p o M(.,t)), where Graph(p o
M, t) ={(z,z*) € X x X* :a* € oo M(x,t)}, for each fizred t € X.

Proof. Suppose that there exists (zg, up) such that
(wo —v,n(zo0,y)) >0, V(y,v) € Graph(p o M(.,1)). (2.1)
Since M is (H,y) — n— monotone, we have (H + ¢ o M(.,t))(X) = X*, so there
exists (x1,u1) € Graph(p o M(.,t)) such that
H(z1) +wu; = H(xo) + up. (2.2)
From (2.1) and (2.2), it follows that
(uo — w1, m(xo, 1)) = —(H (o) — H(x1),n(20,21)) = 0.

Since H is strictly n-monotone mapping, it follows that z; = z¢. Also, from
(2.2), we have u; = wug. Hence, (x,ug) € Graph(p o M(.,t)), that is, up € po
M(.To, t) O

Theorem 2.2. Let X be a real Banach space with its dual X*. Let ¢ : X* —
X*n: X xX — X be single-valued mappings, H : X — X* be a strictly n-
monotone mapping and M : X x X — 2X" be a (H,p) — n— monotone mapping.
Then, (H + ¢ o M(.,t))~, for each fized t € X is a single-valued mapping.

Proof. For any given z* € X*, let x,y € (H+po M(.,t))~!(z*). This implies
x* — H(z) € (po M(z,t)) and z* — H(y) € (po M(y,t)).
Since (¢ o M(.,t)) is p—monotone in the first argument, we have
(2" — H(z) = («" = H(y)),n(x,y))

= —(H(z) — H(y),n(z,y)) = 0.

Therefore, it follows that @ = y, this implies (H +@o M (.,t))~! is a single-valued
mapping. This completes the proof. O
Definition 2.8. Let X be a real Banach space with its dual X*. Le ¢ : X* —
X*n: X x X — X be single-valued mappings, H : X — X* be a strictly n-
monotone mapping and M : X x X — 2X" be a (H, ) — n— monotone mapping.
Then the resolvent operator Rﬁ”z) : X* — X is defined by

Rff’z,t),w(x*) = (H+@oM(.,t))"*(z*), for each fixed t € X and Va* € X*.

Theorem 2.3. Let X be a real Banach space with its dual X*. Le ¢ : X* — X*
be single-valued mapping, n : X x X — X be 7-Lipschitz continuous mapping,
H : X — X* be §-strongly n-monotone mapping and M : X x X — 2X" be a
(H, ¢)—n— monotone mapping. Then, the resolvent operator is Lipschitz continuous

with constant —, that is,

]

H7 * H,
HRM?"t)v‘P(w ) o RMZ].,t),go(y*)

for each fired t € X and z*,y* € X*.

.
< —||lz* —
<5l Y

il
b
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Proof. Let x*,y* € X*. It follows that
Rﬂfff’zﬁt),@(x*) = (H+@oM(., )" (z),

RIS (") = (H + o0 M(.£) 7 ("),

and hence
T — H(RIY | (a%) € po MBI (@*).1)

* H, * s *
Yy *H(RM?_,t)#p(y )) GSDOM(RMZ’t)@(y )7t)'
Since ¢ o M (.,t) is n-monotone in the first argument, we have

(" = H(RJ ) @) = (v = HRGD ) (7)),

H, H
n(RMFwt),so(x*) RME7 1), ga( ))> > 0.

It follows that

H, *
M( t), ( ) RM(n ), (y )
> o =yl (R @) R o 00) |
, * H *
> (ot =y (R0 ) a0 o (07)

> (H(RY ) (@) = HRGE ) (57),

Thus,

H
| R @) = B3 o 0)
for each fixed t € X and z*,y* € X™*. O

Now, we formulate our main problem.

For each i = 1,2, € {1,2} \ 4, let X; be a real Banach space with norm ||.||;
and let X} be its dual space with norm ||| Let g; : X; — Xi, Hy + X; — X5, 05 ¢
X,L* — X:,T]z Xy x X; — Xi; P X, — Xj7Qi : Xj — Xi,S,L' : Xj X X; —
X*pi + X5 = X7 be single-valued mappings and let M; : X; x X; — 2X7 be
(H;, i) — n;— monotone mappings respectively. Then, the system of variational-
like inclusion problems (SVLIP) is to find (z,y) € X1 x Xa such that

0 € S1(Pi(x),Q1(y)) +p1(y) + Mi(g1(z),y),
(2.3)

0 € Sa2(Pa(y), Qa2()) + p2(x) + Ma(g2(y), ).

Special Cases:
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I. If in problem (2.3), X1 = Xo = X, a real Banach space, S = Sy =5 : X x
X > X*"P=P,=PQ,=0Q2=0Q and p1 = ps = p be such that P,Q : X — X
andp: X > X *and M1y =My, =M : X x X — 2X" then problem (2.8) reduces
to the following problem: Find x,y € X such that

0€ S(P(z),Qy)) +p(x) + M(g(x),y), (2.4)

which is an important generalization of the problem considered and studied by Luo
and Huang [15].

I1. If in problem (2.8), X1 = Xo = H, a real Hilbert space, S1 = S2 =0, (a zero
mapping) pr = p2 =p: H — H, My = My = M : H — 2% then problem (2.3)
reduces to the following problem: Find x € H such that

0 € p(x) + M(g(x)). (2.5)
This type of problem (2.5) has been considered and studied by Qing-Bang Zhang

We remark that for appropriate and suitable choices of the above defined mappings,
SVLIP (2.3) includes a number of variational and variational-like inclusions as spe-
cial cases, see for example [3,6-8,17,18] and the related references cited therein.

3. Iterative algorithm

First, we give the following technical lemma:

Lemma 3.1. Let X; be a real Banach space, let ¢; : X — X} be a single-
valued mapping satisfying p;(t +t') = p;(t) + @i(t'), Vi, t' € XF and ker(p;) =
{0}, (i.e.,ker(p;) = {t € XF,0i(t) = 0}). Let g; + X; — Xiymi + X X X; —
Xi,PZ‘ : Xl — XjaQi : Xj — XZ,SZ : Xj X Xl — Xl*,pl : Xj — X: be sz'ngle—
valued mappings and H; : X; — X} be a strictly n;-monotone mapping and let
M; : X; x X; — 2X7 be (H;,p;) — ni— monotone mappings, respectively. Then
(x,y) € X1 x X5 is a solution of (2.3) if and only if

gi(@) = R (Hi@@) = 010 S1(PU0), Qi) —orom)  (B.D)

g2(y) = RE2%, o, (Ha(02() = 920 S2(Pay), @a() — g2 opa(@))  (32)

where Ryp ") = (Hi+@10Mi(oy) ™ Ry (%, o, = (Hat @20 Ma(,2)) ™ are

the resolvent operators.

Proof. Let (z,y) € X1 x X3 is a solution of (2.3), then we have

gi(@) = Ry "y o (Hl(gl(x)) —p1051(Pi(z),Q1(y)) — ¢ Opl(y)>
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= gi(2) = (Hy + 10 Mi(, ) (Hi(g1 ()
~p10 51(Pi(@), Qi) ~ w1 o pi(y)

< Hi(g1(x)) + 1 0 Mi(g1(),y) = Hi(g1())
10 ($1(Pu(2), Q1) + 11w

0cypi0 (51(P1($)7Q1(y)) +p1(y)> + 10 Mi(g1(2),y)
= 0e g0 (S1(P), Q) +m) + Mila().y))

= 0€ S1(Pi(x), Q1(y)) +p1(y) + Mi(g1(2), y).
Since @;(t+t') = @i(t) + wi(t') and ker(p;) = {0}.
Proceeding likewise by using (3.2), we have

92(y) = BRIz, L (Ha(2) — 92 0 $2(Pa(y). @a(2)) — 92 0 ()

< 0 € S3(Pa(y), Q2(x)) + p2(x) + Ma(g2(y), x).

O
Lemma 3.1 is very important from the numerical point of view as it allows us to

suggest the following iterative algorithm for finding the approximate solution of
SVLIP (2.3).

Iterative Algorithm 3.2. For arbitrary point (xo,y0) € X1 x Xa, compute the
sequences {x,} € X1,{yn} € Xo by the iterative scheme:

Tyl = Tp—01 (x7L)+Rﬁ117(1?,1yn,),<p1 (Hl (91 (xn))_@losl (Pl (Ccn)v Ql(yn))_@lopl (yn))

and

92(Yn) = Rﬁzf?@n),w (HQ(QZ(yn))*802052(P2(yn),Q2($n))*@20p2($n)), Vn=12,---.

4. Existence of solution and convergence analysis

Now, we prove the existence of solution and show that the sequences generated by
Tterative Algorithm 3.2 converge strongly to a solution of SVLIP (2.3).

Theorem 4.1. Foric {1,2},5 € {1,2}\ ¢, let X} be g;-uniformly smooth Banach
space, P+ X; — X, Qi : X; — X, and p; : X; — X[ be &, h; and 0;-Lipschitz
continuous, respectively. Let S; : X; x X; — X[ be a;-Lipschitz continuous in the
first argument and B;-Lipschitz continuous in the second argument, g; : X; — X; be
oi-Lipschitz continuous and r;-strongly accretive, n; : X; x X; — X; be 7;-Lipschitz
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continuous and H; : X; — X} be v;-Lipschitz continuous. Suppose p; : X} — X[
be a single-valued mapping satisfying @;(t +t') = wi(t) + @i(t'), Vt,t' € X} and
ker(p;) = {0} such that @; be p;-Lipschitz continuous and let p; 0 S; be €; — p; 0 p;-
cocoercive in the second argument and \;-strongly accretive with respect to H;(g;)
in the first argument. In addition, if

0< (Ay+ Ay + AzAy) < 1, (4.1)

where

1
Ay = (1—qr1+cqoft)m,

T1 1
Do = LOPol — o ey pftafte)

1

As = (az + = 5, ( 10T + (cqy — quer)pf' Bqlhm)H),

1

T q
5*2(#32932 + (g — 26213’ quh@) 2)

T2 1 )
[rs = 508 — s + el afief?) s |

(on +

Ay =

cq; s constant of smoothness of Banach space X; and

0

Hy,m Hlﬂh
HRMl( Y1) s01 bi) = Ry, ,yz)sol

< asllyr — y2ll2, Vb€ leylayZ € Xo,

Ho, Ho,
[ ) = B 0]

< CL1||CE1 —I,Cg”l, \4 b2 c XQ*,IL'l,(EQ c Xl.

Then, the iterative sequence {x,},{yn} generated by Iterative Algorithm 3.2 con-
verge strongly to a solution (x,y) € X1 X Xy of SVLIP (2.3).

Proof. Let (z,y) € X; x X3 be a solution of SVLIP (2.3). By Iterative Algorithm
3.2 and above conditions, we have

Hxn-i-l - xn”l

= [0 = gu@a) + R o) (o ()
10 51(Pi (), @1 () — 1 0 P1 ()

1),91

o1 = gu@n-) + REP, L (Hilgi(@a1))
—©1 OS1(P1(In—1)7Q1(yn_1)) 1 0p1 yn 1 )}H



Iterating a System of Variational-like Inclusion Problems 291

< on — an-1 = (91(2n) = g1(@n-1)) I

_|_HRH17771%) 1 (H1(91(56n)) =10 81(P1(zn), Q1(yn)) — 1 0p1(yn)>
~Ry (Hl (91(2n-1)) — 1 0 S1(P1(Tn-1), Q1 (Yn—1))

—¥1 Opl(ynq )H1

-|-HRH1,77’1W) o (H1(91($n—1)) — 1 051(P1(n-1),Q1(Yn-1)) — 1 Opl(ynﬂ))
7RH17(”71yn 1)1 (Hl(gl(zn—l)) —¢1081(Pi(zn-1),Q1(Yn—1))

—¥1 Opl(yn—1)> H1 (4.3)

Since g; is r;-strongly-accretive and o;-Lipschitz continuous, then using Lemma 2.1,
we have
||Q1

[Zn — 2n-1 = (91(2n) — g1(@n-1)) 1

<n =zl =@ <91($n) = 91(n-1), g, (Tn — CCnfl)>l
+eq ll91(zn) — g1(zn-1)[IT'
<A =aqri+cgof") on — -l
This implies
[#n = 2n-1 = (91(2n) — g1(2n-1))|1
< (1= qur + ¢, 0f)7 [l — 2l (4.4)

Using Theorem 2.3 ,we have the following estimate,

| R o (Hi(91(n)) = 01 0 S1(Pi(0), Q1(a)) = 21 0 11 (3))

*Rﬁll’g’lyn)m (Hl(gl(ﬂfn—l)) — 10 81(P1(Tn-1), Q1(yYn-1)) — 1 Opl(yn—l)) H1

< = H( (91(2n)) — @10 S1(Pr(2n), Q1(Yn)) — 1 Opl(yn))

—(Hl(gl(xnfl)) — 10 51(Pi(Tn-1), Q1(Yn-1)) — 1 Opl(yn—l)) H1

IN

5ol 1) — Hi(o1 (200))
= (10 S1(Pu(@a), Qulyn)) = 910 S1(Pr (1), Qi) |

+(%H‘Pl © S1(P1(wn-1), Q1(yn)) — @1 0 S1(Pr(2n-1), Q1(yn-1))
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—(sm o p1(yn) — ¥1 opl(yn—l)) H1 (4.5)

Since Hi,g1,p1 and Py is v1,01,11 and & -Lipschitz continuous, respectively, Sy :
X9 x Xy — X7 is ap-Lipschitz continuous in the first argument and ¢; 0 51 is Aq-
strongly accretive with respect to Hi(gy) in the first argument, then using Lemma
2.1, we have

HHl(gl(xn)) — Hi(g1(zn1)) = (10 $1(Pi(22), Q(y)

q1

—p1 081 (Pr(Tp-1), Ql(yn)))

< || (1) ~ Hi(gr )
—CI1<<P1 0 S1(P1(2n), Q1(Yn)) — w10 S1(P1(xn-1),Q1(yn)),

T3, (Ha(a(ea)) — Hla o)),

q1

+cg, |1 0 S1(Pr(zn), Q1(yn)) — ¢1 0 S1(P1(zn-1), Q1(yn))

1

< (ot —ad + cq i o 6) llon — zna|T

This implies

Hi(g1(zn)) — Hi(g1(zp-1))
H
—(901 0 S1(P1(xn), @1(yn)) — 10 Sl<Pl(xn71)>Q1(yn)>) H1

1
< (ol —qd + cq it ol ) ln — 2na (4.6)

Also, since ¢1,p1 and Q1 is p1,0; and hy-Lipschitz continuous respectively, S :
X9 x X1 — X7 is f1-Lipschitz continuous in the second argument and ¢; o S; is
€1 — 1 © p1-cocoercive in the second argument, then using Lemma 2.1, we have

H<P1 0 S1(Pr(zn-1),Q1(yn)) — 01 0 S1(P1(zn-1), Q1(Yn-1))

q1

,(@1 op1(yn) — 1 opl(yn—l)) )
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< [le1 0 p1(yn) — @1 0 p1(Yn-1)|IT"

—Q1<901 0 S1(P1(2n-1),Q1(yn)) — Y10 S1(Pr(xn-1), Q1(Yn—1)),

g (<,01 op1(yn) — ¥1 Opl(y”_l))>1

q1

10 S1(P1(zn-1), Q1(yn)) — 1051 (Pr(2n-1),Q1(Yn-1)) .

+cq,

< /1'319(111 ||yn — Yn—1 Hgl
q1
—qie1||p1 0 S1(P1(7n-1), Q1(yn)) — 10 S1(P1(Tn—1), Q1(Yn—1)) )
q1

tcqy ||p1 0 S1(Pr(®n-1),Q1(yn)) — 1 0 S1(Pr(Tn-1), Q1(Yn—1))

1

i 07 |y = yn—a 3"

q1

(e = a161) |01 0 S1(Pi(@n-1), Q1)) = 21 © S1(Pi(2n-1), Q1 (g1),

< (W67 + (e — e BB )l — a5
This implies
H% 0 S1(Pr(zn-1), Q1(yn)) — 10 S1(P1(®n-1), Q1(Yn-1))

,(9@1 o p1(yn) — 1 Opl(y”_l)) H1

1

< (P08 + (e — e BEBE) ™ llgn = yn-1le, (4.7)

where J; @ X7 — X{* is the generalized mapping on X7
Using (4.6) and (4.7) in (4.5), we have

|RE, o0 (a1 (@) = 01 0 S1(Pu(n), Qu(wa) — 010 21 (un))

R o (H1(91(0-1) = 010 S1(P(@01), Q1 (g1))

—¥1 Opl(yn—l ) H1

1
5*1<'7q1<7q1 —qiA1 + Cq1/‘{11104(1h€1h)q1 lzn — Zn-1llx
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1
T ar
+3 (u‘?@i“ + (cq, — qlﬁl)u‘{lﬁflh‘{l) lyn = yn-1lle- (4.8)
Also,

HR]\H/III’ZT%)% (H1(91($n—1)) =10 81(Pr(zn-1), Q1(yn-1))
%1 Opl(ynq))

R o (Hi(91(201)) = 910 $1(Pu(@-1), Q1 (yn-1))

—¥1 Opl(yn—1>)H1

< az2)|yn — Yn—1ll2- (4.9)

Using (4.4)-(4.9) in (4.3), we have

||xn+1 —opll1
1T 1
< ((1 —qr g ol + 5*1(7?0(111 —qM+ Cq#?ﬁf?)‘“)
1
X||lzn — 2p-1ll1

1
T a1
a2+ 5 (W07 + (e —aien)u BPRE)™ ) ln — vl (4.10)

Again, since go is ra-strongly accretive, we have

l92(¥n) — g2(n—1)ll2 lvn — yn_1||&"

> (92(0n) = 291 Jaa (U0 — 1))

2
> rol|yn — yn—1]1%-
This implies
1
1Yn — yn—-1ll2 < Eng(yn) — 92(Yn—1)l|2- (4.11)

Now,

ll92(¥n) — g2(yn—1)ll2
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< || R, o (H2(02(0)) = 22 0 S2(Pa(yn). @a(a))
—¥2 Op2(xn)>

*Rﬁi(nzzn 1),02 (H2(92(yn—1)) — 20 S2(Pa(yn—1), Q2(Tn-1))

—¥2 0p2(33n—1 ) H2

< |RE, oo (Ha02(00)) = 020 S2(Pa(yn), Qan)

—p20 p2(£”ﬂ)>

R (Ha(02(5n1)) = 920 S3(Pa(yn-1), Qa(wn-1)

—p2 OPQ Tp—1 >H2

JrHRJ\HfQ(mm <H2 92(Yn—1)) — 02 © S2(Pao(yn—1), Q2(zn-1))

—P2 0p2 Tn—1 )

B s (H2(92(yn—1)) — 20 S2(P2(Yn—1), Q2(zn-1))

—2 Op2(xn—1)) H2 (4.12)

Proceeding likewise by using (4.5)-(4.8), we have

|Rizm, ) o (Halg2m)) = 2 0 Sa(Palyn), Qaln)) = 02 0 paan)

R, (Ha(92(m 1)) = 920 S3(Palyn 1), Qaln 1))

—®2 0 pz(l’n—1)) H2

IN

%H (H2(92(yn)) 030 S5(Pa(yn), Qa(@n)) — 2 0 pg(xn))

—(H2(92(yn71)) — 20 82(P2(Yn—1), Q2(Tn-1)) — ¥2 OPZ(xnfl)) H2

IN

%Hﬂz(gz(yn)) — Hs(92(yn-1))
~ (2 0 S2(Palyn) Q2(wa)) = 92 0 Sa(Palyn-1), Qa(wa))) |

+%H<P2 0 S2(P2(yn-1), Q2(zn)) — 2 0 S2(P2(Yn—1), Q2(zn-1))
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—(p2 0 p2(n) —wzopz(xn_l))Hz. (4.13)

Since Hay, go, w2 and P is 2,09, p2 and &-Lipschitz continuous, respectively, Ss :
X1 x Xo — X3 is ag-Lipschitz continuous in the first argument and g 0 Sy is Ag-
strongly accretive with respect to Ha(g2) in the first argument, then using Lemma
2.1, we have

| Hag2(5)) = Halga(yn-1))
—(SDQ 0 S2(P2(Yn), Q2(xn)) — p2 0 S2(P2(Yn-1), Q2(xn))) Zz

q2

< HHz(gz(yn)) — Ha(g2(yn-1)) |,
~02(122 0 $2(Pa(yn), Qs ()
20 Sa(Palyn-1), Qa(w)), J5, (Ha(g2(un)) = Holga (1)) ) ).

20 Sa(Palyn), Qa(wn) = #2. S2(Pa(yn 1), Qa(a) ||

+c¢12

2

< (13705 — @22 + Cou 3’ a5 6 ) lyn — yn—1 [

This implies

| Ha(g2(60)) = Ha(g2(y))
~ (020 Sa(Palyn). Qa(wa)) = 02 0 Sa(Palyn-1). Qa(wa))) |

1
< (VPP — qedo + cgupd? o) %2 ||y — Yn—1l2- (4.14)

Also, since @2, p2 and Q2 is uo,02 and ho-Lipschitz continuous, respectively, Sy :
X1 x X9 — X3 is Pa-Lipschitz continuous in the second argument and (g o Sy is
€9 — (pg 0 pPa-cocoercive in the second argument, then using Lemma 2.1, we have

020 Sa(Pawa-1). Qa(@a)) = 02 0 Sa(Palynr), Qal1))
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q2
~(p2 0 pa(an) = 20 palan-)),

< lpz opa(wn) — @2 0 pa(zn-1)l5°
—Q2<<P2 0 82(Po(Yn—1), Qa(xn)) — w2 0 So(Po(Yn—1), Q2(xn-1)),
J&; <902 o p2(Tn) — ¢2 Op2($n71)>>2
q2
gy ||P2 0 S2(Pa(Yn—1), Q2(7n)) — p2 0 S2(Po(yn—1), Q2(Tn-1)) )
< M(2129(2]2”$n - xn—1||(112
q2
—q2€2|p2 © So(Po(yn—1), Q2(Tn)) — ¢2 0 Sa(P2(yYn-1), Q2(Tn-1)) ,
q2
+eua||2 0 S2(Payn-1) Qa(w0)) = 92 0 S2(Pa(ya—1), Qalwn-))|
< M§29§2||$n - mn—IHC{z
q2
+(cgo — Q2€2)‘ @20 92 (Po(Yn-1), Q2(wn)) — w2 0 So(P2(Yn—1), Q2(Tn-1)) ,
< (W80 + (cqu — arer)u BERE ) [ — 2|,

= H<P2 0 S2(Po(yn-1), Q2(xn)) — 02 0 So(Pa(Yn—1), Q2(Tn-1))

—(p2 0 pa(xn) — o OPQ(x”’l))Hz

< (0% + (cqu — @22 BE0E ) ™ N1z — wn-al1, (4.15)

where Jg, : X3 — XJ* is the generalized mapping on X3.
Using (4.14) and (4.15) in (4.13), we have

HRf/fZ’wan)W? (H2(92(yn)) — 920 S2(P2(yn), Q2(wn)) — 2 0p2(l‘n))

“RIZP, oy (H2(92(90-1)) = 92 0 S2(Pa(yn-1), Q2(wn 1))

—¥2 Op2(xn—l))H2

T2 s
< 2P 0f — ada + e o ) g — o
1
T 1
+£ (ug29§2 + (g — Q2€2)Mg2552h32) g — xnal (4.16)
Again,

HRﬁZ’f?xnm <H2(92(yn—1)) — 20 82(Po(yYn—1), Q2(Tn_1)) — @2 °p2(In—1))

SR, o (Ha(92(0n-1)) = 920 S2(Pa(yn1), Qan-1)) = 92 0 pa(an-) )|
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< ail|zn — zn—1l1- (4.17)

Using (4.13)-(4.17) in (4.12), we have
l92(¥n) — g2(Yn—1)ll2

T2
<6*(’Y§20§2 X2 + Co P ALEL )T [y, — Y1 |2

1
T a2
+<a1 + i (,ugzﬁ‘g” (Cqp — qgez)u;ﬁqzh”> )||xn — Tp_1]1- (4.18)

Combining (4.11) and (4.18), we have
[Yn — Yn—1ll2

IN

1
—lg2(yn) — 92(Yn—-1)ll2
T2

IA

1 /7 1
g (672(7;12032 — qaA2 + ngﬂgzangg2) 2 ) lyn — Yn—1ll2

1

1 T
—&—E(m + i(ugzﬁgz + (qu QZ€2)H2 Bq2h(p) )Hxn — Zn—1|l1,

or

1
{rz — 8(752032 = q2Xa + g 137 057 E57 ) %2 }”yn — Yn-1ll2

1

.
< (o0 + 2 (W08 + (con — azea) B8 ) ™ )z = @ .
2

This implies
1Y = Yn-1l2

1
T2 1
(a1+6—(ﬂgzagz + (cqy — qoea) il ﬁqthz) )
= a2 _qo |zn — 2n-1l1- (4.19)

- {7"2_5*(’72 05" — @22 + cg 57 a5’ €57 ) }

Using (4.19) in (4.10), we have
lznt1 — znllh < (A1 4+ Ax + AgAy) ||y — Tn—1]h

< wlzn — zn-1ll1, (4.20)

where Ay, Ao, Az, Ay is as defined in (4.1) and w = (A1 + As + A3Ay), so that
0 < w < 1 from (4.1). Therefore, it follows from (4.20) that {z,} is a Cauchy
sequence in X;. Hence, there exists z € X; such that z,, = x as n — co. Now,
since {x,} is a Cauchy sequence in X7, it follows from (4.19) that {y,} is a Cauchy
sequence in Xo. Therefore, there exists y € X5 such that y,, — y as n — oo. Thus,
the approximate solution {z,}, {y,} generated by Iterative Algorithm 3.2 converge
strongly to (z,y) a solution of SVLIP (2.3). O
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