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A Note on the Expansion of the First Order
Melnikov Function Near a Class of 3-polycycles∗

Yanqin Xiong1 and Maoan Han2,†

Abstract This paper comments that there exist some mistakes in the asymp-
totic expansion of the first order Menikov function near a 3-polycycle given by
Theorem 3.1 of [2]. We present a correction to the theorem, and then use it
to show that only one limit cycle can be found near a 3-polycycle for a class
of quadratic systems.
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Consider a system of the form

ẋ = F (x)y + εp(x, y), ẏ = G(x) +R(x)y2 + εq(x, y) (1)

with

p(x, y) =

n∑
j=0

p̂j(x)yj , q(x, y) =

n∑
j=0

q̂j(x)yj

where ε > 0 is a small parameter, F (x), G(x), R(x), p̂j(x) and q̂j(x) are C∞

functions in their variable x.
Regarding system (1), we make two assumptions below as in [2]:

(A1) F (0) = 0, F (x) = xF1(x), F1(0) > 0, G(0) > 0, R(0) < 0;

(A2) System (1)|ε=0 has a 3-polycycle L0 passing through the saddle points (0,±y0)
and (x1, 0), where y0 > 0, x1 > 0. Please see Figure 1.

Then, by Lemma 2.1 of [2], one can see that system (1)|ε=0 has an integrating
factor of the form

µ(x) = xαµ0(x), α = −2R(0)

F1(0)
− 1,
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Figure 1. A 3-polycycle.

where µ0(x) ∈ C∞, µ0(0) = 1
F1(0)

> 0. Obviously, under the above assumptions,

system (1)|ε=0 has a family of periodic orbits inside L0 given by Lh, 0 < −h < h0.
Then, correspondingly we have the first order Melnikov function for system (1)

M(h) =

∮
Lh

µ(x)q(x, y)dx− µ(x)q(x, y)dy, 0 < −h < h0. (2)

Theorem 3.1 of [2] says that the above function has an asymptotic expansion of the
form for 0 < −h� 1

M(h) =
∑

i≥0,βi 6∈Z+

Bi|h|βi +
( ∑
i≥0,βi∈Z+

Bi|h|βi +
∑
i≥0

C2i+1|h|i+1
)

ln |h|+
∑
i≥0

bih
i. (3)

However, we recently found that the term C2i+1|h|i+1 in (3) should be corrected
as C2i+1h

i+1. The reason is that the authors used |h|i+1 for hi+1 in (3.8) of [2] by
mistake. In fact, according to Theorem 3.2.9 of [1], the formula in (3.8) in page 374
of [2] should be corrected as

I2(h) =
∑
i≥0

C2i+1h
i+1 ln |h|+N1(h).

Therefore, about the expansion of (2) near h = 0, one has
Theorem 1. Under (A1) and (A2) with α ∈ (−1, 0)∪ (0,+∞), we have the asymp-
totic expansion below

M(h) =
∑

i≥0,βi 6∈Z+

Bi|h|βi +
( ∑
i≥0,βi∈Z+

Bi|h|βi +
∑
i≥0

C2i+1h
i+1
)

ln |h|+
∑
i≥0

bih
i,

where 0 < −h� 1, βi = α+i
α+1 and Bi, Ci are constants defined in [2].

Then, Corollary 3.2 of [2] should be corrected as the following
Corollary 1. Under (A1) and (A2) with α ∈ (−1, 0)∪(0,+∞), then for 0 < −h�
1

(1) if α ∈ (−1, 0), then

M(h) = B0|h|
α
α+1 + b0 + (B1 − C1)|h| ln |h|+ b1h+ C3h

2 ln |h|+O(h2);
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(2) if α ∈ (0, 1), then

M(h) = b0+B0|h|
α
α+1 +(B1−C1)|h| ln |h|+b1h+B2|h|

α+2
α+1 +C3h

2 ln |h|+O(h2);

(3) if α ∈ [1,+∞) \ {m− 2, m ≥ 3, m ∈ N+}, then

M(h) = b0+B0|h|
α
α+1 +(B1−C1)|h| ln |h|+b1h+

[α+2]∑
i=2

Bi|h|
α+i
α+1 +C3h

2 ln |h|+O(h2);

(4) if α = m− 2, m ≥ 3, m ∈ N+, then

M(h) = b0+B0|h|
α
α+1 +(B1−C1)|h| ln |h|+b1h+

m−1∑
i=2

Bi|h|
α+i
α+1 +(Bm+C3)|h|2 ln |h|+O(h2).

Now, we present the formulas for b0, b1, C1, B0, B1. Note that system (1) is a
near-integrable system with the first integral of the form

H(x, y) =xα+1
[
P1(x) +

1

2
µ0(x)F1(x)y2

]
,

where

xα+1P1(x) = −
∫
µ(x)G(x)dx ∈ C∞.

Further, we suppose that the expansions of µ0(x), F (x), G(x), P1(x), p(x, y) and
q(x, y) at the origin are of the form respectively

µ0(x) =
∑
j≥0

ajx
j , F (x) =

∑
j≥1

fjx
j , G(x) =

∑
j≥0

gjx
j , P1(x) =

∑
j≥0

pjx
j ,

p(x, y) =

n∑
j=0

∑
i≥0

pijx
iyj , q(x, y) =

n∑
j=0

∑
i≥0

qijx
iyj .

Meanwhile, suppose that H(x, y) at the point (x1, 0) can be expanded as

H(x, y) =
λ

2

[
y2−(x−x1)2

]
+
∑
i≥1

hi2(x−x1)iy2+
∑
i≥3

hi0(x−x1)i, λ = |µ1(x1)
√
F (x1)G′(x1)|.

Clearly, µ(x)p(x, y) and µ(x)q(x, y) can be expressed as at the point (x1, 0)

µ(x)p(x, y) =

n∑
j=0

∑
i≥0

aij(x− x1)iyj , µ(x)q(x, y) =

n∑
j=0

∑
i≥0

bij(x− x1)iyj .

Then, by [2], we have

C1 = − 1

λ

[
(µp)x + (µq)y

]
(x1, 0),

C3 =
−1

2λ2

[
(−3a30 − b21 + a12 + 3b03)− 1

λ
(2a20) + b11)(3h30 − h12)

]
,

b0 =


lim
h→0−

∮
Lh
µqdx− µpdy +O(B0) α ∈ (−1, 0),

lim
h→0−

∮
Lh
µqdx− µpdy, α ∈ (0,+∞),
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b1|B0=B1−C1=0 = lim
h→0−

∮
Lh

[
(µp)x + (µq)y

]
dt,

B0 =

[n
2
]∑

j=0

2j+
3
2

2j + 1
|p0|−

αj+1

α+1 αa0p0,2jB0j ,

B1 =

[n
2
]∑

j=0

2j+
3
2

2j + 1
|p0|−

αj
α+1

[αj + 2

α+ 1
|p0|−

α+3
α+1 p1 −

1

2
(2j + 1)(a1f1 + a0f2)|p0|−

2
α+1

]
αa0p0,2jB1j

+

[n
2
]∑

j=0

2j+
3
2

2j + 1
|p0|−

αj+2

α+1

[
a0q0,2j+1(2j + 1) + (α+ 1)(a0p1,2j + a1p0,2j)

]
B1j

where Bij ’s are constants satisfying B0j > 0 (resp. < 0) for α ∈ (−1, 0) (resp.
α ∈ (0,+∞)), and αj = α−3

2 − (α+ 1)j.
Further, the authors of [2] using (3) (i.e incorrect results) studied a quadratic

system of the from

ẋ = axy + ε

2∑
i+j=0

pijx
iyj , ẏ = b+ cx+ dx2 + ey2 + ε

2∑
i+j=0

qijx
iyj , (4)

where ε > 0 sufficiently small, a, b, d > 0, c, e < 0, and b
e = − c2(a−e)

d(a−2e)2 . The

unperturbed system (4)|ε=0 has a 3-polycycle. From Theorem 5.1 of [2], the authors
[2] claimed to find at least 2 limit cycles near the 3-polycycle for system (4). In
fact, by using the corrected result, one can only get one limit cycle. Here, we give
the detailed proof.

One can easily see that system (4)|ε=0 is an integrable system having an inte-
grating factor µ(x) = 1

ax
α, and it has a first integral given by

H(x, y) =
xα+1

2

[
y2 − d

a− e

(
x− b(a− 2e)

ce

)2]
, α = −1− 2e

a
.

Further it has a center at
( b(a−2e)
c(e−a) , 0

)
and three elementary saddle points at

(
0,±

√
−b
e

)
and

( b(a−2e)
ce , 0

)
, respectively. There exists a family of periodic orbits given by

Lh : H(x, y) = h, h ∈ (η, 0),

around the center and bounded by a 3-polycycle through the three saddle points.

Here, η = − 1
2

d
a−e

a2

e2

[ b(a−2e)
c(e−a)

] 2(a−e)
a < 0. Corresponding to system (4), we have the

following first order Melnikov function

M(h) =

∮
Lh

1

a
xα

2∑
i+j=0

qijx
iyjdx− 1

a
xα

2∑
i+j=0

pijx
iyjdy.

By using integration by parts, it follows that

M(h) =
1

a

∮
Lh

xα
{
q01 + (α+ 1)p10 +

[
q11 + (α+ 2)p20

]
x+

αp00
x

}
ydx+

α

3a
p02

∮
Lh

xα−1y3dx

=A0

∮
Lh

xα−1ydx+A1

∮
Lh

xαydx+A2

∮
Lh

xα+1ydx, (5)
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since y2 = 2hx−α−1 + d
a−e
[
x− b(a−2e)

xe

]2
along the curve Lh. Here,

A0 =
α

a
p00 +

bα

a(a− e)
p02,

A1 =
1

a
q01 +

α+ 1

a
p10 +

cα

a(a− e)
p02,

A2 =
1

a
q11 +

α+ 2

a
p20 +

dα

a(a− e)
p02.

About these integrals in (5), one finds that
Lemma 1. For h ∈ (η, 0), we have∮

Lh

xαydx =
c(e− a)

b(a− 2e)

∮
Lh

xα+1ydx.

Proof. Note that the curve Lh can be rewritten as y = ±
√

2hx−α−1 + d
a−e
[
x− b(a−2e)

ce

]2
for x1(h) ≤ x ≤ x2(h), where x1(h) and x2(h) are the solutions of the equation

− d
a−e

xα+1

2

[
x− b(a−2e)

ce

]2
= h satisfying 0 < x1(h) < b(a−2e)

c(e−a) < x2(h). Then,

c(e− a)

b(a− 2e)

∮
Lh

xα+1ydx−
∮
Lh

xαydx

=

∮
Lh

xα
[ c(e− a)

b(a− 2e)
x− 1

]
ydx

=2

∫ x2(h)

x1(h)

xα
[ c(e− a)

b(a− 2e)
x− 1

]√
2hx−α−1 +

d

a− e
[
x− b(a− 2e)

ce

]2
dx

=2

∫ x2(h)

x1(h)

x
α−1
2

[ c(e− a)

b(a− 2e)
x− 1

]√ d

a− ex
α+1
[
x− b(a− 2e)

ce

]2
+ 2hdx. (6)

Let u = x
α+1
2

[
x− b(a−2e)

ce

]
. Then, du = α+1

2
b(a−2e)
ce x

α−1
2

[ c(e−a)
b(a−2e)x− 1

]
dx, and the

function u is monotonic for x ∈ (x1(h), b(a−2e)c(e−a) ) (resp. x ∈ ( b(a−2e)c(e−a) , x2(h))). Then,

by the above discussion, one can derive that from (6)

c(e− a)

b(a− 2e)

∮
Lh

xα+1ydx−
∮
Lh

xαydx

=
4

α+ 1

ce

b(a− 2e)

[ ∫ ρ[
2(e−a)h

d

] 1
2

√
d

a− e
u2 + 2hdx+

∫ [ 2(e−a)h
d

] 1
2

ρ

√
d

a− e
u2 + 2hdx

]
≡0,

where ρ = ab(a−2e)
ec(e−a)

[ b(a−2e)
c(e−a)

]α+1
2 . This ends the proof.

Thus, by Lemma 1, the function in (5) can be expressed as

M(h) = A0

∮
Lh

xα−1ydx+
[
A1 +

b(a− 2e)

c(e− a)
A2

] ∮
Lh

xαydx. (7)

We note that α > −1 and α 6= 0. By Corollary 1, we should discuss the expansion
of M(h) for α ∈ (−1, 0) or α ∈ (0,+∞), separately. Here, we only provide a proof



130 Y. Xiong & M. Han

for the case α ∈ (0,+∞) since the proof for the case α ∈ (−1, 0) is similar. For
α > 0, from Corollary 1 again, the first order Melnikov function M(h) in (7) near
the 3-polycycle can be expanded as

M(h) = b0 +B0|h|
α
α+1 +O(|h| ln |h|), 0 < −h� 1. (8)

It is easy to see that

B0 =2
√

2
(
− b

2e

) 1−α
2(1+α)

B00

[α
a
p00 +

bα

a(a− e)
p02

]
=2
√

2
(
− b

2e

) 1−α
2(1+α)

B00A0.

Then, we have from (8)

b0 = lim
h→0−

M(h) = lim
h→0−

∮
Lh

µqdx− µpdy =

∮
L0

µqdx− µpdy,

which, implies that

b0 =− 2A0

√
d

a− e

∫ b(a−2e)
ce

0

xα−1[x− b(a− 2e)

ce

]
dx− 2

[
A1 +

b(a− 2e)

c(e− a)
A2

]
×
√

d

a− e

∫ b(a−2e)
ce

0

xα
[
x− b(a− 2e)

ce

]
dx

=
2A0

α(α+ 1)

√
d

a− e

[ b(a− 2e)

ce

]α+1

+
2
[
A1 + b(a−2e)

c(e−a) A2

]
(α+ 1)(α+ 2)

√
d

a− e

[ b(a− 2e)

ce

]α+2

.

Obviously, B0 and b0 can be taken as free parameters. We can choose them
satisfying 0 < −b0 � B0 � 1 such that the sign of the function M(h) in (8) near
h = 0 can be changed one time. This means that one can find only one limit cycle
near the 3-polycycle. Further, as b0 = B0 = 0, we have

A0 = 0, A1 +
b(a− 2e)

c(e− a)
A2 = 0.

Hence, when b0 = B0 = 0, we have M(h) ≡ 0 for h ∈ (η, 0). Thus, one can find one
limit cycle near the 3-polycycle by using the first order Melnikov function.
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