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Qualitative Analysis of a Predator-prey System
with Ratio-dependent and Modified Leslie-Gower

Functional Response∗
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Abstract In this paper, a predator-prey model with ratio-dependent and
modified Leslie-Gower functional response subject to homogeneous Neumann
boundary condition is considered. First, properties of the constant positive sta-
tionary solution are shown, including the existence, nonexistence, multiplicity
and stability. In addition, a comparatively characterization of the stability is
obtained. Moreover, the existing result of global stability is improved. Finally,
properties of nonconstant positive stationary solutions are further studied. By
a priori estimate and the theory of Leray-Schauder degree, it is shown that
nonconstant positive stationary solutions may exist when the system has two
constant positive stationary solutions.
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1. Introduction

The investigations on the relationship between predator and prey are of fundamen-
tal importance in mathematical ecology, the predator-prey models have been exten-
sively studied during recent years. More and more realistic models have been de-
rived by virtue of laboratory experiments and observations since the Lotka-Volterra
predator-prey model. In [13], Leslie emphasized that the growth rate of the prey
and predator has an upper limit and proposed the following predator-prey model

du

dt
= u(a− bu)− p(u)v, t > 0,

dv

dt
= v

(
d− hv

u

)
, t > 0,

u(0) > 0, v(0) > 0,

(1.1)

where u and v represent the species densities of prey and predator respectively. The
term hv/u is usually called the Leslie-Gower functional response, which explains the
loss of predator species due to the rarity of its favorite food u. The term p(u) is
the functional response of predator to prey. As p(u) is Holling-II type, (1.1) has
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been shown to exhibit quite rich behaviors, such as stable limit cycles, semi-stable
limit cycles, global stability of the unique constant positive stationary solution,
bifurcation and periodic solutions, see [5, 6, 8, 9, 18,19,25].

Taking into account the inhomogeneous distribution of the species in different
spatial locations, and the natural tendency of each species to diffuse to areas of
smaller population concentration, (1.1) becomes the following system

∂u

∂t
− d1∆u = u(a− bu)− p(u)v, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = v

(
d− hv

u

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω̄.

(1.2)

As p(u) = βu, Du and Hsu [7] obtained the global stability of the unique constant
positive stationary solution and conjectured that the global stability is true without
any restriction. So nontrivial spatial patterns may not be expected for (1.2) with
p(u) = βu. As p(u) is taken as u/(m+u), Peng and Wang [21,22] analyzed the global
stability of the unique constant stationary solution and deduced that nonconstant
positive stationary solutions may exist for (1.2).

The functional response of predator to prey can be classified as prey-dependent
and predator-dependent types. The prey-dependent functional response only in-
volves the prey u, which means that the prey density alone determines the predation
behavior o f the predator. However, some recent numerical examples from biologi-
cal control reveal that the classical prey-dependent functional response can provide
contrast to the realistic observations [24]. Moreover, there is growing biological and
physiological evidence that in many cases, especially when predators have to search,
share and compete for food, a more suitable functional response should be the so-
called ratio-dependent one, which is predator-dependent [1–3]. For the predator-
prey model with ratio-dependent functional response, one can refer to [12, 15, 27]
and references therein. In particular, Peng and Wang [23] investigated the following
predator-prey model with ratio-dependent functional response

∂u

∂t
− d1∆u = u(λ− u)− βuv

u+mv
, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = v

(
1− v

u

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω̄,

(1.3)

where λ, m, β, d1 and d2 are positive constants. In (1.3), p(u) = u/(u+mv) is just
the ratio-dependent functional response, in which the parameters m and β account
for the saturation rate and the predation rate of the predator, respectively. The
Leslie-Gower functional response v/u is also considered in (1.3), while in the case of
severe scarcity, predator can switch to other populations but its growth is limited
by the fact that its most favorite food is not available in abundance. This situation
can be taken care of by adding a positive constant to the denominator, that is,
v/(u+ k) [4].

Motivated by the above work, this paper is concerned about the following
predator-prey model with ratio-dependent and modified Leslie-Gower functional
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response: 

∂u

∂t
− d1∆u = u(λ− u)− βuv

u+mv
, x ∈ Ω, t > 0,

∂v

∂t
− d2∆v = v

(
1− v

u+ k

)
, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω̄.

(1.4)

Here, k is a positive constant and represents the largest carrying capacity of the
predator when the predator population lacks its favorite food. In [29], Zhao and
Bie investigated the persistence of system (1.4). When the constant positive sta-
tionary solution is unique, they used the method of upper-lower solutions to obtain
the global stability of the constant positive stationary solution under some special
conditions. Whereas, (1.4) may exhibit two constant positive stationary solutions.
So the study of the stability is not complete. Moreover, the method of Lyapunov
function is adopted in this paper to study the global stability. It should be pointed
out that the global stability can be improved in certain circumstance.

On the other hand, we are interested in the existence of nonconstant positive
stationary solutions of (1.4), which is called stationary pattern. In the past decades,
much work has been devoted to the investigation of the existence of stationary
pattern in chemical and biological dynamics theoretically as well as numerically
[10,11,14,17,20–22,26,28]. The existence of nonconstant positive stationary solution
is usually mathematically challenging, which is focused on in this paper. By the
linear stability analysis, it is shown that as (1.4) has two constant positive stationary
solutions, at least one of them is unstable. So, nonconstant positive stationary
solutions may be expected. By the theory of Leray-Schauder degree, we show that
there may exist nonconstant positive stationary solutions in this case. It should be
pointed out that a priori estimate of positive stationary solutions plays an important
role in the analysis. In particular, good a priori estimate is deduced, which has no
restriction on the coefficients in the reaction terms.

The rest of this paper is organized as follows. In Section 2, we study the prop-
erties of constant positive stationary solutions of system (1.4). In Section 3, nonex-
istence and existence of nonconstant positive stationary solutions are shown.

2. Properties of constant positive stationary solu-
tion

In this section, we show some properties of the constant positive stationary solution
of (1.4), including the nonexistence, existence, multiplicity and stability.

First, it is clear that the stationary problem of (1.4) is given by
− d1∆u = u

(
λ− u− βv

u+mv

)
, x ∈ Ω,

− d2∆v = v

(
1− v

u+ k

)
, x ∈ Ω,

∂νu = ∂νv = 0, x ∈ ∂Ω.

(2.1)
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Then (u, v) is a constant positive stationary solution of (1.4) if and only if

β =
(λ− u)[(1 +m)u+mk]

u+ k
= h(u) for u ∈ (0, λ). (2.2)

Then it can be verified that

h′(u) =
−(1 +m)u2 − 2k(1 +m)u+ k(λ−mk)

(u+ k)2
. (2.3)

By some routine analysis, we can deduce the following result:

Lemma 2.1. For the function h(u) defined by (2.2), we have that

(i) if λ ≤ mk, h(u) is strictly decreasing for u ∈ (0, λ);

(ii) if λ > mk, then there exits a unique positive number û ∈ (0, λ) such that{
h′(u) > 0, u ∈ (0, û),

h′(u) < 0, u ∈ (û, λ).

Here, û is given by

û = −k +
√
k(k + λ)

1 +m
.

Theorem 2.1. (i) If λ ≤ mk, then (2.1) has constant positive solutions if and
only if 0 < β < mλ. Moreover, it is unique.

(ii) If λ > mk, then (2.1) has constant positive solutions if and only if 0 < β ≤
h(û). Moreover, as 0 < β ≤ mλ or β = h(û), the constant positive solution is
unique; as mλ < β < h(û), there exist two constant positive solutions. Here,
h and û are given by Lemma 2.1.

It should be pointed out that when (2.1) has a unique constant positive solution,
we always denote it by (u∗, v∗); when there exist two constant positive solutions,
we always denote them by (u1∗, v1∗) and (u2∗, v2∗) with u1∗ < u2∗.

Next, we consider the stability of the constant positive solution of (2.1). To do
so, let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues of −∆ on Ω with homogeneous
Neumann boundary condition. Then for

X =
{
(u, v) ∈

[
C1(Ω̄)

]2
: ∂νu|∂Ω = ∂νv|∂Ω = 0

}
, (2.4)

we can decompose X as

X =
∞⊕
i=0

Xi,

where Xi is the eigenspace corresponding to µi. Let

u = (u, v)T , D = diag(d1, d2) (2.5)

and

F (u) =

(
u

(
λ− u− βv

u+mv

)
, v

(
1− v

u+ k

))T

. (2.6)
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Then (2.1) can be rewritten by

D∆u+ F (u) = 0. (2.7)

Let ū∗ = (ū∗, v̄∗) be a constant positive solution of (2.1). Then the linearized
problem of (2.7) at ū∗ is given by

D∆u+ Fu(ū∗)u = µu,

where

Fu(ū∗) =

λ− 2ū∗ − mβv̄2
∗

(ū∗+mv̄∗)
2 − βū2

∗
(ū∗+mv̄∗)

2

1 −1

 =

A(ū∗) B(ū∗)

1 −1

 . (2.8)

Since Xi is invariant under the operator D∆+ Fu(ū∗), we obtain that µ is an
eigenvalue of the linearized problem on Xi if and only if it is an eigenvalue of the
following matrix

−µiD + Fu(ū∗) =

−d1µi +A(ū∗) B(ū∗)

1 −1− d2µi

 .

So, the characteristic equation is given by

µ2 − Ti(ū∗)µ+Di(ū∗) = 0,

where

Ti(ū∗) = −(d1 + d2)µi − 1 +A(ū∗),

Di(ū∗) = d1d2µi
2 + [d1 − d2A(ū∗)]µi − (A(ū∗) +B(ū∗)).

It is clear that B(ū∗) < 0.

To show the stability of ū∗, we need to consider the sign of A(ū∗) and −(A(ū∗)+
B(ū∗)).

Lemma 2.2. Assume that ū∗ = (ū∗, v̄∗) is a constant positive solution of (2.1).
Then

(i) (A(ū∗) +B(ū∗))h
′(ū∗) > 0, where h is the function given by Lemma 2.1;

(ii) if λ ≤ mk, we have that A(ū∗) < 0;

(iii) if λ > mk, we have that {
A(ū∗) < 0, if u∗ > ũ,

A(ū∗) > 0, if u∗ < ũ,

where ũ is the positive number given by

ũ =
λ−mk

m+ 2
. (2.9)
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Proof. By some computations, we obtain that

−(A(ū∗) +B(ū∗)) =
βū2∗

(ū∗ +mv̄∗)
2 −

[
λ− 2ū∗ −

mβv̄2∗
(ū∗ +mv̄∗)2

]
=

h(ū∗)ū
2
∗

(ū∗ +mv̄∗)
2 −

[
λ− 2ū∗ −

mh(ū∗)v̄
2
∗

(ū∗ +mv̄∗)2

]
=

−ū∗(ū∗ + k)h′(ū∗)

(1 +m)ū∗ +mk
,

which yields the conclusion of (i).
For the sign of A(ū∗), we can deduce that

A(ū∗) = λ− 2ū∗ −
mβv̄2∗

(ū∗ +mv̄∗)2

=
ū∗

(1 +m)ū∗ +mk
[(λ−mk)− (m+ 2)ū∗] .

Thus, the conclusions of (ii) and (iii) are obtained. The proof of the lemma is
complete.

It should be remarked that by some computations, we can show that

h′(ũ) =
λ−mk

(ũ+ k)2(m+ 2)2
[−km(m+ 2)− (1 +m)(λ−mk)] < 0.

Thus, it follows that

û < ũ <
λ−mk

1 +m
,

where (λ−mk)/(1+m) is the unique constant positive solution of (2.2) for β = mλ.

Theorem 2.2. (i) Assume that λ ≤ mk, 0 < β < mλ or λ > mk, 0 < β ≤ mλ,
then the unique constant positive solution (u∗, v∗) of (2.1) is asymptotically
stable.

(ii) Assume that λ > mk and mλ < β ≤ h(ũ) with ũ given by (2.9). Then
(u1∗, v1∗) is unstable and (u2∗, v2∗) is stable.

(iii) Assume that λ > mk and h(ũ) < β < h(û). Then (u1∗, v1∗) is unstable.
If d1µj < A(u2∗) for some positive integer j and d2 is large enough, then
(u2∗, v2∗) is unstable; if d1µ1 > A(u2∗), then (u2∗, v2∗) is stable for A(u2∗) > 1
and unstable for A(u2∗) < 1.

Proof. First, if λ ≤ mk and 0 < β < mλ, Lemma 2.2 asserts that A(u∗, v∗) < 0.
If λ > mk and 0 < β ≤ mλ, we have that

λ−mk

1 +m
≤ u∗ < λ.

So, it follows that u∗ > ũ, which implies that A(u∗, v∗) < 0. Thus, Ti(u∗) < 0 and
Di(u∗) > 0 for any i ≥ 0. The conclusion of (1) is proved.

Second, if λ > mk and mλ < β ≤ h(ũ), (2.1) has two constant positive solutions
(ui∗, vi∗) (i = 1, 2) with u1∗ < u2∗. Moreover,

0 < u1∗ < û < ũ ≤ u2∗ <
λ−mk

1 +m
.
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Then h′(u1∗) > 0. By virtue of Lemma 2.2, we have that

D0(u1∗, v1∗) = −(A(u1∗, v1∗) +B(u1∗, v1∗)) < 0,

which implies that (u1∗, v1∗) is unstable. On the other hand, as u2∗ > ũ, one sees
that A(u2∗, v2∗) < 0, which yields that (u2∗, v2∗) is stable.

Finally, if λ > mk and h(ũ) < β < h(û), one can also see that (2.1) has two
constant positive solutions (ui∗, vi∗) (i = 1, 2) with u1∗ < û < u2∗ < ũ. Thus,
(u1∗, v1∗) is unstable. Moreover, we have that A(u2∗, v2∗) > 0 and D0(u2∗, v2∗) > 0.
As

Dj(u2∗, v2∗) = d2µj(d1µj −A(u2∗, v2∗)) + d1µj −D0(u2∗, v2∗),

it is easy to see the conclusion of (3). Thus, the proof of the theorem is complete.

Finally, we show the global stability of the constant positive solution of (2.1).

Theorem 2.3. Assume that λ < mk and 0 < β < mλ. Then the unique constant
positive solution u∗ = (u∗, v∗) of (2.1) is globally asymptotically stable.

Proof. Let (u(x, t), v(x, t)) be the solution of (2.1). Set

f(u, v) = λ− u− βv

u+mv
, g(u, v) = 1− v

u+ k

and define

W (u, v) =

∫
u− u∗
u

du+ α

∫
v − v∗
v

dv, E(t) =

∫
Ω

W (u(x, t), v(x, t))dx,

where α is a positive constant to be decided later.
Direct computations give that

dE(t)

dt
=

∫
Ω

{Wu(u(x, t), v(x, t))ut +Wv(u(x, t), v(x, t))vt} dx

=

∫
Ω

{
u− u∗
u

[d1∆u+ uf(u, v)] + α
v − v∗
v

[d2∆v + vg(u, v)]

}
dx

=−
∫
Ω

(
d1
u∗
u2

|∇u|2 + αd2
v∗
v2

|∇v|2
)
dx

+

∫
Ω

[(u− u∗)f(u, v) + α(v − v∗)g(u, v)] dx

=I1(t) + I2(t).

It is obvious that

I1(t) = −
∫
Ω

(
d1
u∗
u2

|∇u|2 + αd2
v∗
v2

|∇v|2
)
dx ≤ 0.

Furthermore, we can deduce that

I2(t) =

∫
Ω

{
(u− u∗)

2

[
−1 +

βv∗
(u+mv)(u∗ +mv∗)

]
+

[
α

u+ k
− βu∗

(u+mv)(u∗ +mv∗)

]
(u− u∗)(v − v∗)−

α

u+ k
(v − v∗)

2

}
dx.
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If there exist positive constants α and T such that for all x ∈ Ω̄ and t ≥ T, any
solution (u(x, t), v(x, t)) of (2.1) satisfies

−1 +
βv∗

(u+mv)(u∗ +mv∗)
< 0

and[
α

u+ k
− βu∗

(u+mv)(u∗ +mv∗)

]2
+ 4

α

u+ k

[
−1 +

βv∗
(u+mv)(u∗ +mv∗)

]
< 0,

(2.10)
then

dE(t)

dt
= I1(t) + I2(t) ≤ 0

for t ≥ T, which implies that u∗ = (u∗, v∗) is globally asymptotically stable.
On the one hand, a standard comparison argument asserts that for

0 < ε < min

{
k,
k(mλ− β)

mk + β

}
,

there exists T > 0 such that for all x ∈ Ω and t > T,

u(x, t) > λ− β

m
− ε, v(x, t) > k − ε.

Thus, for t > T, we have that

(u+mv)(u∗ +mv∗) >

[(
λ− β

m
− ε

)
+m(k − ε)

]
mv∗

>

(
λ− β

m
− ε+

k − ε

k
λ

)
mv∗

>

(
mλ− β −mε+

k − ε

k
β

)
v∗

= βv∗ +

[
mλ− β −

(
m+

β

k

)
ε

]
v∗ > βv∗.

On the other hand, since

ψ(α) =

[
α

u+ k
− βu∗

(u+mv)(u∗ +mv∗)

]2
+ 4

α

u+ k

[
−1 +

βv∗
(u+mv)(u∗ +mv∗)

]
=

[
α

u+ k
+

βu∗
(u+mv)(u∗ +mv∗)

]2
+ 4

[
βk

(u+mv)(u∗ +mv∗)
− 1

]
α

u+ k
,

one sees that ψ(α) < 0 is equivalent to

α

u+ k
+

βu∗
(u+mv)(u∗ +mv∗)

< 2
√
α

√
1

u+ k

[
1− βk

(u+mv)(u∗ +mv∗)

]
. (2.11)

While it can be verified that

△ = 4
1

u+ k

[
1− βk

(u+mv)(u∗ +mv∗)

]
− 4

1

u+ k

βu∗
(u+mv)(u∗ +mv∗)
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= 4
1

u+ k

[
1− βv∗

(u+mv)(u∗ +mv∗)

]
> 0

for t > T and x ∈ Ω̄, which implies that there exists α > 0 such that ψ(α) < 0 for
t > T and x ∈ Ω̄. Thus, the proof is complete.

Remark 2.1. Due to Theorem 2.1, one sees that (1.4) actually has a unique con-
stant positive stationary solution for 0 < β < mλ. In [29], Zhao and Bie also
considered system (1.4). By the method of upper-lower solutions, they deduced
that the unique constant positive stationary solution is globally stable when m < 1.
By Theorem 2.3, we show that the global stability is true for λ < mk. Thus, as
λ/k > 1, the unique constant positive stationary solution is globally stable form < 1
and m > λ/k, which implies that we supplement the result of global stability; as
λ/k < 1, the unique constant positive stationary solution is globally stable for any
m > β/λ, which implies that we improve the existing result of global stability.

3. Properties of nonconstant positive stationary so-
lutions

In this section, we investigate the nonexistence and existence of nonconstant positive
solutions of (2.1). Before that, we need to establish a priori estimate of positive
solutions of (2.1).

First, in order to obtain a priori estimates, we list two useful lemmas due to Lou
and Ni [17] and Lin et al. [16], respectively.

Lemma 3.1. (Maximum Principle [17]) Suppose that g ∈ C(Ω̄× R).

(i) Assume that w(x) ∈ C2(Ω) ∩ C1(Ω̄) satisfies

∆w(x) + g(x,w(x)) ≥ 0 in Ω, ∂νw|∂Ω ≤ 0.

If w(x0) = maxΩ̄ w(x), then g(x0, w(x0)) ≥ 0.

(ii) Assume that w(x) ∈ C2(Ω) ∩ C1(Ω̄) satisfies

∆w(x) + g(x,w(x)) ≤ 0 in Ω, ∂νw|∂Ω ≥ 0.

If w(x0) = minΩ̄ w(x), then g(x0, w(x0)) ≤ 0.

Lemma 3.2. (Harnack Inequality [16]) Assume that c(x) ∈ C(Ω̄), w(x) ∈ C2(Ω)∩
C1(Ω̄) is a positive solution to

∆w(x) + c(x)w(x) = 0 in Ω, ∂νw|∂Ω = 0.

Then there exists a positive constant C∗ = C∗(Ω, ∥c(x)∥∞) such that

max
Ω̄

w(x) ≤ C∗ min
Ω̄
w(x).

For notational convenience, we denote the constants m, k, λ, β collected by Λ in
the following.
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Theorem 3.1. Assume that m, k, λ, β are fixed constants. For any given positive
constant κ, there exist two positive constants C(Λ, κ,Ω) and C(Λ, κ,Ω) such that if
d1 ≥ κ, any positive solution (u, v) of (2.1) satisfies

C < u(x), v(x) < C, x ∈ Ω̄.

Proof. A direct application of Lemma 3.2 to the first equation of (2.1) yields that
u(x) < λ. Let v(x0) = maxΩ̄ v(x), then the maximum principle shows that

v(x0) ≤ u(x0) + k ≤ k +max
Ω̄

u(x) < λ+ k. (3.1)

Then the desired positive upper bound C is found.
Let v(x1) = minΩ̄ v(x), the maximum principle yields that

v(x1)

u(x1) + k
≥ 1.

Therefore, it follows that

v(x) ≥ v(x1) ≥ u(x1) + k > k. (3.2)

So, if the conclusion is false, there exists a sequence {d1n}n≥1 with d1n ≥ κ and a
positive solution (un, vn) of (2.1) corresponding to d1 = d1n satisfies

min
Ω̄
un → 0 as n→ ∞.

It is clear that un satisfies

∆un +
un
d1n

(λ− un − βvn
un +mvn

) = 0. (3.3)

Since

∥ 1

d1n

(
λ− un − βvn

un +mvn

)
∥ ≤ 1

κ
(2λ+

β

m
),

the Harnack inequality asserts that there exists a positive constant C independent of
n such that maxΩ̄ un(x) ≤ CminΩ̄ un(x). Thus, we have that un(x) → 0 uniformly
as n → ∞. As k < vn < k + maxΩ̄ un(x), it follows that vn(x) → k uniformly as
n→ ∞.

Integrating the equation of (3.3) over Ω, we obtain that∫
Ω

un

(
λ− un − βvn

un +mvn

)
dx = 0. (3.4)

So, one sees that

λ− un − βvn
un +mvn

→ λ− β

m
as n→ ∞.

If λ ̸= β
m , then a contradiction to (3.4) is derived.

If λ = β
m and β ̸= m2k, by some rearrangements, we see that

0 =

∫
Ω

un

(
λ− un − βvn

un +mvn

)
dx =

∫
Ω

un
2

(
β

m

1

un +mvn
− 1

)
dx.
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It is clear that
β

m

1

un +mvn
− 1 → β

m2k
− 1 as n→ ∞.

Thus, we also deduce a contradiction.
If λ = β

m and β = m2k, some rearrangements yield that

0 =

∫
Ω

un

(
λ− un − βvn

un +mvn

)
dx =

∫
Ω

un
2

(
β

m

1

un +mvn
− β

m2k

)
dx

= − β

m2k

∫
Ω

u2n
un +m(vn − k)

un +mvn
dx.

Since vn > k, one sees that for sufficiently large n,∫
Ω

un

(
λ− un − βvn

un +mvn

)
dx = − β

m2k

∫
Ω

u2n
un +m(vn − k)

un +mvn
dx < 0,

which is a contradiction to (3.4). Thus, the proof of the theorem is complete.
Next, we use the energy method to show the nonexistence of nonconstant positive

solutions of (2.1).

Theorem 3.2. Assume that m, k, λ, β and d2 are fixed constants with d2 ≥ κ0 >
1/µ1. Then there exists a positive constant κ1 depending on m, k, λ, β and κ0 such
that (2.1) has no nonconstant positive solutions for d1 ≥ κ1.

Proof. Assume that (u, v) is a positive solution of (2.1). Denote

ū =
1

|Ω|

∫
Ω

udx, v̄ =
1

|Ω|

∫
Ω

vdx.

Multiplying (u − ū) to the first equation of (2.1) and integrating on Ω, we obtain
that

d1

∫
Ω

|∇u|2dx =

∫
Ω

{
(u− ū)

[
u(λ− u)− βuv

u+mv
− ū(λ− ū) +

βūv̄

ū+mv̄

]}
dx

=

∫
Ω

{[
λ− (u+ ū)− mβvv̄

(u+mv)(ū+mv̄)

]
(u− ū)2

− βuū

(u+mv)(ū+mv̄)
(u− ū)(v − v̄)

}
dx

≤
∫
Ω

{
λ(u− ū)2 − βuū

(u+mv)(ū+mv̄)
(u− ū)(v − v̄)

}
dx.

Similarly, we have

d2

∫
Ω

|∇v|2dx =

∫
Ω

{
(v − v̄)2

(
1− v + v̄

ū+ k

)
+

v2

(u+ k)(ū+ k)
(u− ū)(v − v̄)

}
dx

≤
∫
Ω

{
(v − v̄)2 +

v2

(u+ k)(ū+ k)
(u− ū)(v − v̄)

}
dx.

Since ∥∥∥∥ v2

(u+ k)(ū+ k)
− βuū

(u+mv)(ū+mv̄)

∥∥∥∥ < β +
(k + λ)2

k2
,
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it follows that there exists a positive constant M such that∫
Ω

(
d1|∇u|2 + d2|∇v|2

)
dx ≤

∫
Ω

{
λ(u− ū)2 + 2M |u− ū||v − v̄|+ (v − v̄)2

}
dx.

Applying ε-Young Inequality, we have that∫
Ω

(
d1|∇u|2 + d2|∇v|2

)
dx ≤

∫
Ω

{(
λ+

M

ε

)
(u− ū)2 + (1 +Mε)(v − v̄)2

}
dx,

where ε is any positive number. Using the Poincaré Inequality, we have∫
Ω

(
d1µ1|u− ū|2 + d2µ1|v − v̄|2

)
dx ≤

∫
Ω

{(
λ+

M

ε

)
(u− ū)2 + (1 +Mε)(v − v̄)2

}
dx.

As d2 ≥ κ0 > 1/µ1, we choose

0 < ε0 <
κ0µ1 − 1

M
, κ1 =

1

µ1
(λ+

M

ε0
).

Then for d1 ≥ κ1, we can conclude that u and v are constants. Thus, the proof of
the theorem is complete.

Finally, we show the existence of nonconstant positive solutions of (2.1) by using
the Leray-Schauder degree theory. For u, D and F (u) defined by (2.5) and(2.6), it
is easy to see that u is a solution of (2.1) if and only if it satisfies

G(d1, d2;u) := u− (I −∆)−1
{
D−1F (u) + u

}
= 0 on X. (3.5)

Here, (I−∆)−1 is the inverse operator of I−∆ in Ω with the homogeneous Neumann
boundary condition, X is given by (2.4).

If u∗ is a constant positive solution of (3.5), some direct computations deduce
that

Gu(d1, d2;u∗) = I − (I −∆)−1(D−1Fu(u∗) + I).

If Gu(d1, d2;u∗) is invertible, then the index of G at u∗ is defined by

index(G,u∗) = (−1)σ,

where σ is the multiplicity of negative eigenvalues of Gu(u∗). As in [20], we define

H(d1, d2;µ;u∗) = det(µD − Fu(u∗)). (3.6)

Then it can be shown that

H(d1, d2;µ) = d1d2µ
2 + (d1 −Ad2)µ− (A+B),

where A and B are given by (2.8). Then

lim
d2→∞

H(µ)

d2
= µ(d1µ−A).

By virtue of Lemma 2.2, we can obtain the following result:
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Lemma 3.3. Assume that λ > mk and mλ < β < h(û), (2.1) has two constant
positive solutions ui∗ = (ui∗, vi∗) (i = 1, 2). Then as d2 is large enough, (3.6) with
u∗ has two real roots µj

− and µj
+. For u∗ = u1∗, we have that

µj
− < 0 < µj

+, lim
d2→∞

µj
+ =

A(u1∗)

d1
.

For u∗ = u2∗, we have that if mλ < β < h(ũ), then µj
− < µj

+ < 0; if h(ũ) < β <
h(û), then 0 < µj

− < µj
+ with the property

lim
d2→∞

µj
− = 0, lim

d2→∞
µj

+ =
A(u2∗)

d1
.

Now we can give the following existence results:

Theorem 3.3. Assume that λ > mk and h(ũ) < β < h(û). If A(u1∗)
d1

∈ (µp, µp+1)

and A(u2∗)
d1

∈ (µq, µq+1) for some positive integers p and q, and
p∑

i=1

m(µi)+
q∑

i=1

m(µi)

is odd, where m(µi) is the multiplicity of µi, then there exists a positive constant
d2

∗ such that system (2.1) has at least one nonconstant positive solution for all
d2 > d2

∗.

Proof. First, due to Theorem 2.1 and Lemma 3.3, one sees that system (2.1) has
two constant positive solutions ui∗ = (ui∗, vi∗)(i = 1, 2) with

u1∗ < u2∗, A(u1∗) > 0, A(u2∗) > 0.

As A(u1∗)
d1

∈ (µp, µp+1) and A(u2∗)
d1

∈ (µq, µq+1), then there exists some positive
number d∗ such that for d2 > d∗, we have that

H(d1, d2;µ;u1∗) < 0 for µ = µ0, µ1, · · · , µp

and

H(d1, d2;µ;u2∗) < 0 for µ = µ1, µ2, · · · , µq.

If the conclusion is not true, then there exists some d̂2 such that system (2.1)

with d2 = d̂2 has no nonconstant positive solutions. Then (2.1) with d2 = d̂2 has
two constant positive solutions ui∗(i = 1, 2). Moreover, Theorem 3.2 asserts that

there exists some large positive number d̂1 > d∗ such that (2.1) with d1 = d̂1 and

d2 ≥ d̂1 has no nonconstant positive solutions and exactly two constant positive

solutions ui∗(i = 1, 2). Choosing d̂1 large enough such that A(ui∗)

d̂1
< µ1 for i = 1, 2,

it follows that

H(d̂1, d̂1;µ;u1∗) < 0 for µ = µ0

and

H(d̂1, d̂1;µ;u2∗) > 0 for any µi.

For t ∈ [0, 1], we define

D(t) =

 td1 + (1− t)d̂1 0

0 td̂2 + (1− t)d̂1

 , t ∈ [0, 1],
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and

Φ(u, t) = u− (I −∆)−1
{
D−1(t)F (u) + u

}
= 0 on X. (3.7)

Then, u is a positive solution of (2.1) if and only if it is a positive solution of equation
(3.7) with t = 1. Moreover, Theorem 3.1 deduces that there exist positive constants
C and C such that any nonnegative solution of (3.7) satisfies C < u(x), v(x) < C
for all t ∈ [0, 1]. Thus, for M defined by

M =

{
u = (u, v) ∈ X :

1

2
C < u(x), v(x) < 2C

}
,

we have that Φ(u, t) ̸= 0 for all u ∈ ∂M and t ∈ [0, 1]. Then the homotopy
invariance of Leray-Schauder degree yields that

deg(Φ(·, 1),M, 0) = deg(Φ(·, 0),M, 0).

On the one hand,

deg(Φ(·, 0),M, 0) = index(Φ(·; 0),u1∗) + index(Φ(·; 0),u2∗) = (−1)1 + (−1)0 = 0.

On the other hand,

deg(Φ(·, 1),M, 0) = index(Φ(·; 1),u1∗) + index(Φ(·; 1),u2∗)

= (−1)
1+

p∑
i=1

m(µi)
+ (−1)

q∑
i=1

m(µi)
= −2 or 2.

Thus, we derive a contradiction. So, the proof of the theorem is complete.
Similarly, we can deduce the following conclusion.

Theorem 3.4. Assume that λ > mk, mλ < β < h(ũ). If A(u1∗)
d1

∈ (µp, µp+1) for

some positive integer p, and
p∑

i=1

m(µi) is odd, then there exists a positive constant

d2
∗ such that system (2.1) has at least one nonconstant positive solution for all

d2 > d2
∗.
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